Shortcuts

Source code for mmpose.core.post_processing.nms

# ------------------------------------------------------------------------------
# Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch
# Original licence: Copyright (c) Microsoft, under the MIT License.
# ------------------------------------------------------------------------------

import numpy as np


def nms(dets, thr):
    """Greedily select boxes with high confidence and overlap <= thr.

    Args:
        dets: [[x1, y1, x2, y2, score]].
        thr: Retain overlap < thr.

    Returns:
         list: Indexes to keep.
    """
    if len(dets) == 0:
        return []

    x1 = dets[:, 0]
    y1 = dets[:, 1]
    x2 = dets[:, 2]
    y2 = dets[:, 3]
    scores = dets[:, 4]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while len(order) > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= thr)[0]
        order = order[inds + 1]

    return keep


[docs]def oks_iou(g, d, a_g, a_d, sigmas=None, vis_thr=None): """Calculate oks ious. Args: g: Ground truth keypoints. d: Detected keypoints. a_g: Area of the ground truth object. a_d: Area of the detected object. sigmas: standard deviation of keypoint labelling. vis_thr: threshold of the keypoint visibility. Returns: list: The oks ious. """ if sigmas is None: sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89 ]) / 10.0 vars = (sigmas * 2)**2 xg = g[0::3] yg = g[1::3] vg = g[2::3] ious = np.zeros(len(d), dtype=np.float32) for n_d in range(0, len(d)): xd = d[n_d, 0::3] yd = d[n_d, 1::3] vd = d[n_d, 2::3] dx = xd - xg dy = yd - yg e = (dx**2 + dy**2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2 if vis_thr is not None: ind = list(vg > vis_thr) and list(vd > vis_thr) e = e[ind] ious[n_d] = np.sum(np.exp(-e)) / len(e) if len(e) != 0 else 0.0 return ious
[docs]def oks_nms(kpts_db, thr, sigmas=None, vis_thr=None, score_per_joint=False): """OKS NMS implementations. Args: kpts_db: keypoints. thr: Retain overlap < thr. sigmas: standard deviation of keypoint labelling. vis_thr: threshold of the keypoint visibility. score_per_joint: the input scores (in kpts_db) are per joint scores Returns: np.ndarray: indexes to keep. """ if len(kpts_db) == 0: return [] if score_per_joint: scores = np.array([k['score'].mean() for k in kpts_db]) else: scores = np.array([k['score'] for k in kpts_db]) kpts = np.array([k['keypoints'].flatten() for k in kpts_db]) areas = np.array([k['area'] for k in kpts_db]) order = scores.argsort()[::-1] keep = [] while len(order) > 0: i = order[0] keep.append(i) oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, vis_thr) inds = np.where(oks_ovr <= thr)[0] order = order[inds + 1] keep = np.array(keep) return keep
def _rescore(overlap, scores, thr, type='gaussian'): """Rescoring mechanism gaussian or linear. Args: overlap: calculated ious scores: target scores. thr: retain oks overlap < thr. type: 'gaussian' or 'linear' Returns: np.ndarray: indexes to keep """ assert len(overlap) == len(scores) assert type in ['gaussian', 'linear'] if type == 'linear': inds = np.where(overlap >= thr)[0] scores[inds] = scores[inds] * (1 - overlap[inds]) else: scores = scores * np.exp(-overlap**2 / thr) return scores
[docs]def soft_oks_nms(kpts_db, thr, max_dets=20, sigmas=None, vis_thr=None, score_per_joint=False): """Soft OKS NMS implementations. Args: kpts_db: keypoints and scores. thr: retain oks overlap < thr. max_dets: max number of detections to keep. sigmas: Keypoint labelling uncertainty. score_per_joint: the input scores (in kpts_db) are per joint scores Returns: np.ndarray: indexes to keep. """ if len(kpts_db) == 0: return [] if score_per_joint: scores = np.array([k['score'].mean() for k in kpts_db]) else: scores = np.array([k['score'] for k in kpts_db]) kpts = np.array([k['keypoints'].flatten() for k in kpts_db]) areas = np.array([k['area'] for k in kpts_db]) order = scores.argsort()[::-1] scores = scores[order] keep = np.zeros(max_dets, dtype=np.intp) keep_cnt = 0 while len(order) > 0 and keep_cnt < max_dets: i = order[0] oks_ovr = oks_iou(kpts[i], kpts[order[1:]], areas[i], areas[order[1:]], sigmas, vis_thr) order = order[1:] scores = _rescore(oks_ovr, scores[1:], thr) tmp = scores.argsort()[::-1] order = order[tmp] scores = scores[tmp] keep[keep_cnt] = i keep_cnt += 1 keep = keep[:keep_cnt] return keep
[docs]def nearby_joints_nms( kpts_db, dist_thr, num_nearby_joints_thr=None, score_per_joint=False, max_dets=-1, ): """Nearby joints NMS implementations. Args: kpts_db (list[dict]): keypoints and scores. dist_thr (float): threshold for judging whether two joints are close. num_nearby_joints_thr (int): threshold for judging whether two instances are close. max_dets (int): max number of detections to keep. score_per_joint (bool): the input scores (in kpts_db) are per joint scores. Returns: np.ndarray: indexes to keep. """ assert dist_thr > 0, '`dist_thr` must be greater than 0.' if len(kpts_db) == 0: return [] if score_per_joint: scores = np.array([k['score'].mean() for k in kpts_db]) else: scores = np.array([k['score'] for k in kpts_db]) kpts = np.array([k['keypoints'] for k in kpts_db]) num_people, num_joints, _ = kpts.shape if num_nearby_joints_thr is None: num_nearby_joints_thr = num_joints // 2 assert num_nearby_joints_thr < num_joints, '`num_nearby_joints_thr` must '\ 'be less than the number of joints.' # compute distance threshold pose_area = kpts.max(axis=1) - kpts.min(axis=1) pose_area = np.sqrt(np.power(pose_area, 2).sum(axis=1)) pose_area = pose_area.reshape(num_people, 1, 1) pose_area = np.tile(pose_area, (num_people, num_joints)) close_dist_thr = pose_area * dist_thr # count nearby joints between instances instance_dist = kpts[:, None] - kpts instance_dist = np.sqrt(np.power(instance_dist, 2).sum(axis=3)) close_instance_num = (instance_dist < close_dist_thr).sum(2) close_instance = close_instance_num > num_nearby_joints_thr # apply nms ignored_pose_inds, keep_pose_inds = set(), list() indexes = np.argsort(scores)[::-1] for i in indexes: if i in ignored_pose_inds: continue keep_inds = close_instance[i].nonzero()[0] keep_ind = keep_inds[np.argmax(scores[keep_inds])] if keep_ind not in ignored_pose_inds: keep_pose_inds.append(keep_ind) ignored_pose_inds = ignored_pose_inds.union(set(keep_inds)) # limit the number of output instances if max_dets > 0 and len(keep_pose_inds) > max_dets: sub_inds = np.argsort(scores[keep_pose_inds])[-1:-max_dets - 1:-1] keep_pose_inds = [keep_pose_inds[i] for i in sub_inds] return keep_pose_inds
Read the Docs v: 0.x
Versions
latest
1.x
v1.0.0rc1
v0.29.0
v0.28.0
dev-1.x
0.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.