Shortcuts

mmpose.datasets.datasets.body.mpii_dataset 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp
from typing import Callable, List, Optional, Sequence, Tuple, Union

import numpy as np
from mmengine.fileio import exists, get_local_path
from scipy.io import loadmat

from mmpose.registry import DATASETS
from mmpose.structures.bbox import bbox_cs2xyxy
from ..base import BaseCocoStyleDataset


[文档]@DATASETS.register_module() class MpiiDataset(BaseCocoStyleDataset): """MPII Dataset for pose estimation. "2D Human Pose Estimation: New Benchmark and State of the Art Analysis" ,CVPR'2014. More details can be found in the `paper <http://human-pose.mpi-inf.mpg.de/contents/andriluka14cvpr.pdf>`__ . MPII keypoints:: 0: 'right_ankle' 1: 'right_knee', 2: 'right_hip', 3: 'left_hip', 4: 'left_knee', 5: 'left_ankle', 6: 'pelvis', 7: 'thorax', 8: 'upper_neck', 9: 'head_top', 10: 'right_wrist', 11: 'right_elbow', 12: 'right_shoulder', 13: 'left_shoulder', 14: 'left_elbow', 15: 'left_wrist' Args: ann_file (str): Annotation file path. Default: ''. bbox_file (str, optional): Detection result file path. If ``bbox_file`` is set, detected bboxes loaded from this file will be used instead of ground-truth bboxes. This setting is only for evaluation, i.e., ignored when ``test_mode`` is ``False``. Default: ``None``. headbox_file (str, optional): The path of ``mpii_gt_val.mat`` which provides the headboxes information used for ``PCKh``. Default: ``None``. data_mode (str): Specifies the mode of data samples: ``'topdown'`` or ``'bottomup'``. In ``'topdown'`` mode, each data sample contains one instance; while in ``'bottomup'`` mode, each data sample contains all instances in a image. Default: ``'topdown'`` metainfo (dict, optional): Meta information for dataset, such as class information. Default: ``None``. data_root (str, optional): The root directory for ``data_prefix`` and ``ann_file``. Default: ``None``. data_prefix (dict, optional): Prefix for training data. Default: ``dict(img=None, ann=None)``. filter_cfg (dict, optional): Config for filter data. Default: `None`. indices (int or Sequence[int], optional): Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Default: ``None`` which means using all ``data_infos``. serialize_data (bool, optional): Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Default: ``True``. pipeline (list, optional): Processing pipeline. Default: []. test_mode (bool, optional): ``test_mode=True`` means in test phase. Default: ``False``. lazy_init (bool, optional): Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file. ``Basedataset`` can skip load annotations to save time by set ``lazy_init=False``. Default: ``False``. max_refetch (int, optional): If ``Basedataset.prepare_data`` get a None img. The maximum extra number of cycles to get a valid image. Default: 1000. """ METAINFO: dict = dict(from_file='configs/_base_/datasets/mpii.py') def __init__(self, ann_file: str = '', bbox_file: Optional[str] = None, headbox_file: Optional[str] = None, data_mode: str = 'topdown', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = dict(img=''), filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000): if headbox_file: if data_mode != 'topdown': raise ValueError( f'{self.__class__.__name__} is set to {data_mode}: ' 'mode, while "headbox_file" is only ' 'supported in topdown mode.') if not test_mode: raise ValueError( f'{self.__class__.__name__} has `test_mode==False` ' 'while "headbox_file" is only ' 'supported when `test_mode==True`.') headbox_file_type = headbox_file[-3:] allow_headbox_file_type = ['mat'] if headbox_file_type not in allow_headbox_file_type: raise KeyError( f'The head boxes file type {headbox_file_type} is not ' f'supported. Should be `mat` but got {headbox_file_type}.') self.headbox_file = headbox_file super().__init__( ann_file=ann_file, bbox_file=bbox_file, data_mode=data_mode, metainfo=metainfo, data_root=data_root, data_prefix=data_prefix, filter_cfg=filter_cfg, indices=indices, serialize_data=serialize_data, pipeline=pipeline, test_mode=test_mode, lazy_init=lazy_init, max_refetch=max_refetch) def _load_annotations(self) -> Tuple[List[dict], List[dict]]: """Load data from annotations in MPII format.""" assert exists(self.ann_file), 'Annotation file does not exist' with get_local_path(self.ann_file) as local_path: with open(local_path) as anno_file: self.anns = json.load(anno_file) if self.headbox_file: assert exists(self.headbox_file), 'Headbox file does not exist' with get_local_path(self.headbox_file) as local_path: self.headbox_dict = loadmat(local_path) headboxes_src = np.transpose(self.headbox_dict['headboxes_src'], [2, 0, 1]) SC_BIAS = 0.6 instance_list = [] image_list = [] used_img_ids = set() ann_id = 0 # mpii bbox scales are normalized with factor 200. pixel_std = 200. for idx, ann in enumerate(self.anns): center = np.array(ann['center'], dtype=np.float32) scale = np.array([ann['scale'], ann['scale']], dtype=np.float32) * pixel_std # Adjust center/scale slightly to avoid cropping limbs if center[0] != -1: center[1] = center[1] + 15. / pixel_std * scale[1] # MPII uses matlab format, index is 1-based, # we should first convert to 0-based index center = center - 1 # unify shape with coco datasets center = center.reshape(1, -1) scale = scale.reshape(1, -1) bbox = bbox_cs2xyxy(center, scale) # load keypoints in shape [1, K, 2] and keypoints_visible in [1, K] keypoints = np.array(ann['joints']).reshape(1, -1, 2) keypoints_visible = np.array(ann['joints_vis']).reshape(1, -1) instance_info = { 'id': ann_id, 'img_id': int(ann['image'].split('.')[0]), 'img_path': osp.join(self.data_prefix['img'], ann['image']), 'bbox_center': center, 'bbox_scale': scale, 'bbox': bbox, 'bbox_score': np.ones(1, dtype=np.float32), 'keypoints': keypoints, 'keypoints_visible': keypoints_visible, } if self.headbox_file: # calculate the diagonal length of head box as norm_factor headbox = headboxes_src[idx] head_size = np.linalg.norm(headbox[1] - headbox[0], axis=0) head_size *= SC_BIAS instance_info['head_size'] = head_size.reshape(1, -1) if instance_info['img_id'] not in used_img_ids: used_img_ids.add(instance_info['img_id']) image_list.append({ 'img_id': instance_info['img_id'], 'img_path': instance_info['img_path'], }) instance_list.append(instance_info) ann_id = ann_id + 1 return instance_list, image_list
Read the Docs v: latest
Versions
latest
1.x
v1.0.0rc1
0.x
v0.29.0
v0.28.0
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.