Source code for mmpose.models.backbones.vgg
# Copyright (c) OpenMMLab. All rights reserved.
import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm
from mmpose.registry import MODELS
from .base_backbone import BaseBackbone
def make_vgg_layer(in_channels,
out_channels,
num_blocks,
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
dilation=1,
with_norm=False,
ceil_mode=False):
layers = []
for _ in range(num_blocks):
layer = ConvModule(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
dilation=dilation,
padding=dilation,
bias=True,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg)
layers.append(layer)
in_channels = out_channels
layers.append(nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=ceil_mode))
return layers
[docs]@MODELS.register_module()
class VGG(BaseBackbone):
"""VGG backbone.
Args:
depth (int): Depth of vgg, from {11, 13, 16, 19}.
with_norm (bool): Use BatchNorm or not.
num_classes (int): number of classes for classification.
num_stages (int): VGG stages, normally 5.
dilations (Sequence[int]): Dilation of each stage.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. When it is None, the default behavior depends on
whether num_classes is specified. If num_classes <= 0, the default
value is (4, ), outputting the last feature map before classifier.
If num_classes > 0, the default value is (5, ), outputting the
classification score. Default: None.
frozen_stages (int): Stages to be frozen (all param fixed). -1 means
not freezing any parameters.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
ceil_mode (bool): Whether to use ceil_mode of MaxPool. Default: False.
with_last_pool (bool): Whether to keep the last pooling before
classifier. Default: True.
init_cfg (dict or list[dict], optional): Initialization config dict.
Default:
``[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm']),
dict(
type='Normal',
std=0.01,
layer=['Linear']),
]``
"""
# Parameters to build layers. Each element specifies the number of conv in
# each stage. For example, VGG11 contains 11 layers with learnable
# parameters. 11 is computed as 11 = (1 + 1 + 2 + 2 + 2) + 3,
# where 3 indicates the last three fully-connected layers.
arch_settings = {
11: (1, 1, 2, 2, 2),
13: (2, 2, 2, 2, 2),
16: (2, 2, 3, 3, 3),
19: (2, 2, 4, 4, 4)
}
def __init__(self,
depth,
num_classes=-1,
num_stages=5,
dilations=(1, 1, 1, 1, 1),
out_indices=None,
frozen_stages=-1,
conv_cfg=None,
norm_cfg=None,
act_cfg=dict(type='ReLU'),
norm_eval=False,
ceil_mode=False,
with_last_pool=True,
init_cfg=[
dict(type='Kaiming', layer=['Conv2d']),
dict(
type='Constant',
val=1,
layer=['_BatchNorm', 'GroupNorm']),
dict(type='Normal', std=0.01, layer=['Linear']),
]):
super().__init__(init_cfg=init_cfg)
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for vgg')
assert num_stages >= 1 and num_stages <= 5
stage_blocks = self.arch_settings[depth]
self.stage_blocks = stage_blocks[:num_stages]
assert len(dilations) == num_stages
self.num_classes = num_classes
self.frozen_stages = frozen_stages
self.norm_eval = norm_eval
with_norm = norm_cfg is not None
if out_indices is None:
out_indices = (5, ) if num_classes > 0 else (4, )
assert max(out_indices) <= num_stages
self.out_indices = out_indices
self.in_channels = 3
start_idx = 0
vgg_layers = []
self.range_sub_modules = []
for i, num_blocks in enumerate(self.stage_blocks):
num_modules = num_blocks + 1
end_idx = start_idx + num_modules
dilation = dilations[i]
out_channels = 64 * 2**i if i < 4 else 512
vgg_layer = make_vgg_layer(
self.in_channels,
out_channels,
num_blocks,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
dilation=dilation,
with_norm=with_norm,
ceil_mode=ceil_mode)
vgg_layers.extend(vgg_layer)
self.in_channels = out_channels
self.range_sub_modules.append([start_idx, end_idx])
start_idx = end_idx
if not with_last_pool:
vgg_layers.pop(-1)
self.range_sub_modules[-1][1] -= 1
self.module_name = 'features'
self.add_module(self.module_name, nn.Sequential(*vgg_layers))
if self.num_classes > 0:
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
[docs] def forward(self, x):
outs = []
vgg_layers = getattr(self, self.module_name)
for i in range(len(self.stage_blocks)):
for j in range(*self.range_sub_modules[i]):
vgg_layer = vgg_layers[j]
x = vgg_layer(x)
if i in self.out_indices:
outs.append(x)
if self.num_classes > 0:
x = x.view(x.size(0), -1)
x = self.classifier(x)
outs.append(x)
return tuple(outs)
def _freeze_stages(self):
vgg_layers = getattr(self, self.module_name)
for i in range(self.frozen_stages):
for j in range(*self.range_sub_modules[i]):
m = vgg_layers[j]
m.eval()
for param in m.parameters():
param.requires_grad = False
[docs] def train(self, mode=True):
super().train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
# trick: eval have effect on BatchNorm only
if isinstance(m, _BatchNorm):
m.eval()