Source code for mmpose.datasets.datasets.animal.animalkingdom_dataset
# Copyright (c) OpenMMLab. All rights reserved.
from mmpose.registry import DATASETS
from ..base import BaseCocoStyleDataset
[docs]@DATASETS.register_module()
class AnimalKingdomDataset(BaseCocoStyleDataset):
"""Animal Kingdom dataset for animal pose estimation.
"[CVPR2022] Animal Kingdom:
A Large and Diverse Dataset for Animal Behavior Understanding"
More details can be found in the `paper
<https://www.researchgate.net/publication/
359816954_Animal_Kingdom_A_Large_and_Diverse
_Dataset_for_Animal_Behavior_Understanding>`__ .
Website: <https://sutdcv.github.io/Animal-Kingdom>
The dataset loads raw features and apply specified transforms
to return a dict containing the image tensors and other information.
Animal Kingdom keypoint indexes::
0: 'Head_Mid_Top',
1: 'Eye_Left',
2: 'Eye_Right',
3: 'Mouth_Front_Top',
4: 'Mouth_Back_Left',
5: 'Mouth_Back_Right',
6: 'Mouth_Front_Bottom',
7: 'Shoulder_Left',
8: 'Shoulder_Right',
9: 'Elbow_Left',
10: 'Elbow_Right',
11: 'Wrist_Left',
12: 'Wrist_Right',
13: 'Torso_Mid_Back',
14: 'Hip_Left',
15: 'Hip_Right',
16: 'Knee_Left',
17: 'Knee_Right',
18: 'Ankle_Left ',
19: 'Ankle_Right',
20: 'Tail_Top_Back',
21: 'Tail_Mid_Back',
22: 'Tail_End_Back
Args:
ann_file (str): Annotation file path. Default: ''.
bbox_file (str, optional): Detection result file path. If
``bbox_file`` is set, detected bboxes loaded from this file will
be used instead of ground-truth bboxes. This setting is only for
evaluation, i.e., ignored when ``test_mode`` is ``False``.
Default: ``None``.
data_mode (str): Specifies the mode of data samples: ``'topdown'`` or
``'bottomup'``. In ``'topdown'`` mode, each data sample contains
one instance; while in ``'bottomup'`` mode, each data sample
contains all instances in a image. Default: ``'topdown'``
metainfo (dict, optional): Meta information for dataset, such as class
information. Default: ``None``.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Default: ``None``.
data_prefix (dict, optional): Prefix for training data. Default:
``dict(img=None, ann=None)``.
filter_cfg (dict, optional): Config for filter data. Default: `None`.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Default: ``None`` which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy.
Default: ``True``.
pipeline (list, optional): Processing pipeline. Default: [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Default: ``False``.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Default: ``False``.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Default: 1000.
"""
METAINFO: dict = dict(from_file='configs/_base_/datasets/ak.py')