Shortcuts

Source code for mmpose.datasets.transforms.bottomup_transforms

# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import Dict, List, Optional, Sequence, Tuple, Union

import cv2
import numpy as np
import xtcocotools.mask as cocomask
from mmcv.image import imflip_, imresize
from mmcv.image.geometric import imrescale
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import cache_randomness
from scipy.stats import truncnorm

from mmpose.registry import TRANSFORMS
from mmpose.structures.bbox import (bbox_clip_border, bbox_corner2xyxy,
                                    bbox_xyxy2corner, get_pers_warp_matrix,
                                    get_udp_warp_matrix, get_warp_matrix)
from mmpose.structures.keypoint import keypoint_clip_border


[docs]@TRANSFORMS.register_module() class BottomupGetHeatmapMask(BaseTransform): """Generate the mask of valid regions from the segmentation annotation. Required Keys: - img_shape - invalid_segs (optional) - warp_mat (optional) - flip (optional) - flip_direction (optional) - heatmaps (optional) Added Keys: - heatmap_mask """ def __init__(self, get_invalid: bool = False): super().__init__() self.get_invalid = get_invalid def _segs_to_mask(self, segs: list, img_shape: Tuple[int, int]) -> np.ndarray: """Calculate mask from object segmentations. Args: segs (List): The object segmentation annotations in COCO format img_shape (Tuple): The image shape in (h, w) Returns: np.ndarray: The binary object mask in size (h, w), where the object pixels are 1 and background pixels are 0 """ # RLE is a simple yet efficient format for storing binary masks. # details can be found at `COCO tools <https://github.com/ # cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/ # mask.py>`__ rles = [] for seg in segs: if isinstance(seg, (tuple, list)): rle = cocomask.frPyObjects(seg, img_shape[0], img_shape[1]) if isinstance(rle, list): # For non-crowded objects (e.g. human with no visible # keypoints), the results is a list of rles rles.extend(rle) else: # For crowded objects, the result is a single rle rles.append(rle) if rles: mask = cocomask.decode(cocomask.merge(rles)) else: mask = np.zeros(img_shape, dtype=np.uint8) return mask
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupGetHeatmapMask` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ invalid_segs = results.get('invalid_segs', []) img_shape = results['img_shape'] # (img_h, img_w) input_size = results['input_size'] mask = self._segs_to_mask(invalid_segs, img_shape) if not self.get_invalid: # Calculate the mask of the valid region by negating the # segmentation mask of invalid objects mask = np.logical_not(mask) # Apply an affine transform to the mask if the image has been # transformed if 'warp_mat' in results: warp_mat = results['warp_mat'] mask = mask.astype(np.float32) mask = cv2.warpAffine( mask, warp_mat, input_size, flags=cv2.INTER_LINEAR) # Flip the mask if the image has been flipped if results.get('flip', False): flip_dir = results['flip_direction'] if flip_dir is not None: mask = imflip_(mask, flip_dir) # Resize the mask to the same size of heatmaps if 'heatmaps' in results: heatmaps = results['heatmaps'] if isinstance(heatmaps, list): # Multi-level heatmaps heatmap_mask = [] for hm in results['heatmaps']: h, w = hm.shape[1:3] _mask = imresize( mask, size=(w, h), interpolation='bilinear') heatmap_mask.append(_mask) else: h, w = heatmaps.shape[1:3] heatmap_mask = imresize( mask, size=(w, h), interpolation='bilinear') else: heatmap_mask = mask # Binarize the mask(s) if isinstance(heatmap_mask, list): results['heatmap_mask'] = [hm > 0.5 for hm in heatmap_mask] else: results['heatmap_mask'] = heatmap_mask > 0.5 return results
[docs]@TRANSFORMS.register_module() class BottomupRandomAffine(BaseTransform): r"""Randomly shift, resize and rotate the image. Required Keys: - img - img_shape - keypoints (optional) Modified Keys: - img - keypoints (optional) Added Keys: - input_size - warp_mat Args: input_size (Tuple[int, int]): The input image size of the model in [w, h] shift_factor (float): Randomly shift the image in range :math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions, where :math:`dx(y) = img_w(h) \cdot shift_factor` in pixels. Defaults to 0.2 shift_prob (float): Probability of applying random shift. Defaults to 1.0 scale_factor (Tuple[float, float]): Randomly resize the image in range :math:`[scale_factor[0], scale_factor[1]]`. Defaults to (0.75, 1.5) scale_prob (float): Probability of applying random resizing. Defaults to 1.0 scale_type (str): wrt ``long`` or ``short`` length of the image. Defaults to ``short`` rotate_factor (float): Randomly rotate the bbox in :math:`[-rotate_factor, rotate_factor]` in degrees. Defaults to 40.0 use_udp (bool): Whether use unbiased data processing. See `UDP (CVPR 2020)`_ for details. Defaults to ``False`` .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524 """ def __init__(self, input_size: Optional[Tuple[int, int]] = None, shift_factor: float = 0.2, shift_prob: float = 1., scale_factor: Tuple[float, float] = (0.75, 1.5), scale_prob: float = 1., scale_type: str = 'short', rotate_factor: float = 30., rotate_prob: float = 1, shear_factor: float = 2.0, shear_prob: float = 1.0, use_udp: bool = False, pad_val: Union[float, Tuple[float]] = 0, border: Tuple[int, int] = (0, 0), distribution='trunc_norm', transform_mode='affine', bbox_keep_corner: bool = True, clip_border: bool = False) -> None: super().__init__() assert transform_mode in ('affine', 'affine_udp', 'perspective'), \ f'the argument transform_mode should be either \'affine\', ' \ f'\'affine_udp\' or \'perspective\', but got \'{transform_mode}\'' self.input_size = input_size self.shift_factor = shift_factor self.shift_prob = shift_prob self.scale_factor = scale_factor self.scale_prob = scale_prob self.scale_type = scale_type self.rotate_factor = rotate_factor self.rotate_prob = rotate_prob self.shear_factor = shear_factor self.shear_prob = shear_prob self.use_udp = use_udp self.distribution = distribution self.clip_border = clip_border self.bbox_keep_corner = bbox_keep_corner self.transform_mode = transform_mode if isinstance(pad_val, (int, float)): pad_val = (pad_val, pad_val, pad_val) if 'affine' in transform_mode: self._transform = partial( cv2.warpAffine, flags=cv2.INTER_LINEAR, borderValue=pad_val) else: self._transform = partial(cv2.warpPerspective, borderValue=pad_val) def _random(self, low: float = -1., high: float = 1., size: tuple = ()) -> np.ndarray: if self.distribution == 'trunc_norm': """Sample from a truncated normal distribution.""" return truncnorm.rvs(low, high, size=size).astype(np.float32) elif self.distribution == 'uniform': x = np.random.rand(*size) return x * (high - low) + low else: raise ValueError(f'the argument `distribution` should be either' f'\'trunc_norn\' or \'uniform\', but got ' f'{self.distribution}.') def _fix_aspect_ratio(self, scale: np.ndarray, aspect_ratio: float): """Extend the scale to match the given aspect ratio. Args: scale (np.ndarray): The image scale (w, h) in shape (2, ) aspect_ratio (float): The ratio of ``w/h`` Returns: np.ndarray: The reshaped image scale in (2, ) """ w, h = scale if w > h * aspect_ratio: if self.scale_type == 'long': _w, _h = w, w / aspect_ratio elif self.scale_type == 'short': _w, _h = h * aspect_ratio, h else: raise ValueError(f'Unknown scale type: {self.scale_type}') else: if self.scale_type == 'short': _w, _h = w, w / aspect_ratio elif self.scale_type == 'long': _w, _h = h * aspect_ratio, h else: raise ValueError(f'Unknown scale type: {self.scale_type}') return np.array([_w, _h], dtype=scale.dtype) @cache_randomness def _get_transform_params(self) -> Tuple: """Get random transform parameters. Returns: tuple: - offset (np.ndarray): Image offset rate in shape (2, ) - scale (np.ndarray): Image scaling rate factor in shape (1, ) - rotate (np.ndarray): Image rotation degree in shape (1, ) """ # get offset if np.random.rand() < self.shift_prob: offset = self._random(size=(2, )) * self.shift_factor else: offset = np.zeros((2, ), dtype=np.float32) # get scale if np.random.rand() < self.scale_prob: scale_min, scale_max = self.scale_factor scale = scale_min + (scale_max - scale_min) * ( self._random(size=(1, )) + 1) / 2 else: scale = np.ones(1, dtype=np.float32) # get rotation if np.random.rand() < self.rotate_prob: rotate = self._random() * self.rotate_factor else: rotate = 0 # get shear if 'perspective' in self.transform_mode and np.random.rand( ) < self.shear_prob: shear = self._random(size=(2, )) * self.shear_factor else: shear = np.zeros((2, ), dtype=np.float32) return offset, scale, rotate, shear
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupRandomAffine` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ img_h, img_w = results['img_shape'][:2] w, h = self.input_size offset_rate, scale_rate, rotate, shear = self._get_transform_params() if 'affine' in self.transform_mode: offset = offset_rate * [img_w, img_h] scale = scale_rate * [img_w, img_h] # adjust the scale to match the target aspect ratio scale = self._fix_aspect_ratio(scale, aspect_ratio=w / h) if self.transform_mode == 'affine_udp': center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2], dtype=np.float32) warp_mat = get_udp_warp_matrix( center=center + offset, scale=scale, rot=rotate, output_size=(w, h)) else: center = np.array([img_w / 2, img_h / 2], dtype=np.float32) warp_mat = get_warp_matrix( center=center + offset, scale=scale, rot=rotate, output_size=(w, h)) else: offset = offset_rate * [w, h] center = np.array([w / 2, h / 2], dtype=np.float32) warp_mat = get_pers_warp_matrix( center=center, translate=offset, scale=scale_rate[0], rot=rotate, shear=shear) # warp image and keypoints results['img'] = self._transform(results['img'], warp_mat, (int(w), int(h))) if 'keypoints' in results: # Only transform (x, y) coordinates kpts = cv2.transform(results['keypoints'], warp_mat) if kpts.shape[-1] == 3: kpts = kpts[..., :2] / kpts[..., 2:3] results['keypoints'] = kpts if self.clip_border: results['keypoints'], results[ 'keypoints_visible'] = keypoint_clip_border( results['keypoints'], results['keypoints_visible'], (w, h)) if 'bbox' in results: bbox = bbox_xyxy2corner(results['bbox']) bbox = cv2.transform(bbox, warp_mat) if bbox.shape[-1] == 3: bbox = bbox[..., :2] / bbox[..., 2:3] if not self.bbox_keep_corner: bbox = bbox_corner2xyxy(bbox) if self.clip_border: bbox = bbox_clip_border(bbox, (w, h)) results['bbox'] = bbox if 'area' in results: warp_mat_for_area = warp_mat if warp_mat.shape[0] == 2: aux_row = np.array([[0.0, 0.0, 1.0]], dtype=warp_mat.dtype) warp_mat_for_area = np.concatenate((warp_mat, aux_row)) results['area'] *= np.linalg.det(warp_mat_for_area) results['input_size'] = self.input_size results['warp_mat'] = warp_mat return results
[docs]@TRANSFORMS.register_module() class BottomupResize(BaseTransform): """Resize the image to the input size of the model. Optionally, the image can be resized to multiple sizes to build a image pyramid for multi-scale inference. Required Keys: - img - ori_shape Modified Keys: - img - img_shape Added Keys: - input_size - warp_mat - aug_scale Args: input_size (Tuple[int, int]): The input size of the model in [w, h]. Note that the actually size of the resized image will be affected by ``resize_mode`` and ``size_factor``, thus may not exactly equals to the ``input_size`` aug_scales (List[float], optional): The extra input scales for multi-scale testing. If given, the input image will be resized to different scales to build a image pyramid. And heatmaps from all scales will be aggregated to make final prediction. Defaults to ``None`` size_factor (int): The actual input size will be ceiled to a multiple of the `size_factor` value at both sides. Defaults to 16 resize_mode (str): The method to resize the image to the input size. Options are: - ``'fit'``: The image will be resized according to the relatively longer side with the aspect ratio kept. The resized image will entirely fits into the range of the input size - ``'expand'``: The image will be resized according to the relatively shorter side with the aspect ratio kept. The resized image will exceed the given input size at the longer side use_udp (bool): Whether use unbiased data processing. See `UDP (CVPR 2020)`_ for details. Defaults to ``False`` .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524 """ def __init__(self, input_size: Tuple[int, int], aug_scales: Optional[List[float]] = None, size_factor: int = 32, resize_mode: str = 'fit', pad_val: tuple = (0, 0, 0), use_udp: bool = False): super().__init__() self.input_size = input_size self.aug_scales = aug_scales self.resize_mode = resize_mode self.size_factor = size_factor self.use_udp = use_udp self.pad_val = pad_val @staticmethod def _ceil_to_multiple(size: Tuple[int, int], base: int): """Ceil the given size (tuple of [w, h]) to a multiple of the base.""" return tuple(int(np.ceil(s / base) * base) for s in size) def _get_input_size(self, img_size: Tuple[int, int], input_size: Tuple[int, int]) -> Tuple: """Calculate the actual input size (which the original image will be resized to) and the padded input size (which the resized image will be padded to, or which is the size of the model input). Args: img_size (Tuple[int, int]): The original image size in [w, h] input_size (Tuple[int, int]): The expected input size in [w, h] Returns: tuple: - actual_input_size (Tuple[int, int]): The target size to resize the image - padded_input_size (Tuple[int, int]): The target size to generate the model input which will contain the resized image """ img_w, img_h = img_size ratio = img_w / img_h if self.resize_mode == 'fit': padded_input_size = self._ceil_to_multiple(input_size, self.size_factor) if padded_input_size != input_size: raise ValueError( 'When ``resize_mode==\'fit\', the input size (height and' ' width) should be mulitples of the size_factor(' f'{self.size_factor}) at all scales. Got invalid input ' f'size {input_size}.') pad_w, pad_h = padded_input_size rsz_w = min(pad_w, pad_h * ratio) rsz_h = min(pad_h, pad_w / ratio) actual_input_size = (rsz_w, rsz_h) elif self.resize_mode == 'expand': _padded_input_size = self._ceil_to_multiple( input_size, self.size_factor) pad_w, pad_h = _padded_input_size rsz_w = max(pad_w, pad_h * ratio) rsz_h = max(pad_h, pad_w / ratio) actual_input_size = (rsz_w, rsz_h) padded_input_size = self._ceil_to_multiple(actual_input_size, self.size_factor) else: raise ValueError(f'Invalid resize mode {self.resize_mode}') return actual_input_size, padded_input_size
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`BottomupResize` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ img = results['img'] img_h, img_w = results['ori_shape'] w, h = self.input_size input_sizes = [(w, h)] if self.aug_scales: input_sizes += [(int(w * s), int(h * s)) for s in self.aug_scales] imgs = [] for i, (_w, _h) in enumerate(input_sizes): actual_input_size, padded_input_size = self._get_input_size( img_size=(img_w, img_h), input_size=(_w, _h)) if self.use_udp: center = np.array([(img_w - 1.0) / 2, (img_h - 1.0) / 2], dtype=np.float32) scale = np.array([img_w, img_h], dtype=np.float32) warp_mat = get_udp_warp_matrix( center=center, scale=scale, rot=0, output_size=actual_input_size) else: center = np.array([img_w / 2, img_h / 2], dtype=np.float32) scale = np.array([ img_w * padded_input_size[0] / actual_input_size[0], img_h * padded_input_size[1] / actual_input_size[1] ], dtype=np.float32) warp_mat = get_warp_matrix( center=center, scale=scale, rot=0, output_size=padded_input_size) _img = cv2.warpAffine( img, warp_mat, padded_input_size, flags=cv2.INTER_LINEAR, borderValue=self.pad_val) imgs.append(_img) # Store the transform information w.r.t. the main input size if i == 0: results['img_shape'] = padded_input_size[::-1] results['input_center'] = center results['input_scale'] = scale results['input_size'] = padded_input_size if self.aug_scales: results['img'] = imgs results['aug_scales'] = self.aug_scales else: results['img'] = imgs[0] results['aug_scale'] = None return results
[docs]@TRANSFORMS.register_module() class BottomupRandomCrop(BaseTransform): """Random crop the image & bboxes & masks. The absolute ``crop_size`` is sampled based on ``crop_type`` and ``image_size``, then the cropped results are generated. Required Keys: - img - keypoints - bbox (optional) - masks (BitmapMasks | PolygonMasks) (optional) Modified Keys: - img - img_shape - keypoints - keypoints_visible - num_keypoints - bbox (optional) - bbox_score (optional) - id (optional) - category_id (optional) - raw_ann_info (optional) - iscrowd (optional) - segmentation (optional) - masks (optional) Added Keys: - warp_mat Args: crop_size (tuple): The relative ratio or absolute pixels of (width, height). crop_type (str, optional): One of "relative_range", "relative", "absolute", "absolute_range". "relative" randomly crops (h * crop_size[0], w * crop_size[1]) part from an input of size (h, w). "relative_range" uniformly samples relative crop size from range [crop_size[0], 1] and [crop_size[1], 1] for height and width respectively. "absolute" crops from an input with absolute size (crop_size[0], crop_size[1]). "absolute_range" uniformly samples crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w in range [crop_size[0], min(w, crop_size[1])]. Defaults to "absolute". allow_negative_crop (bool, optional): Whether to allow a crop that does not contain any bbox area. Defaults to False. recompute_bbox (bool, optional): Whether to re-compute the boxes based on cropped instance masks. Defaults to False. bbox_clip_border (bool, optional): Whether clip the objects outside the border of the image. Defaults to True. Note: - If the image is smaller than the absolute crop size, return the original image. - If the crop does not contain any gt-bbox region and ``allow_negative_crop`` is set to False, skip this image. """ def __init__(self, crop_size: tuple, crop_type: str = 'absolute', allow_negative_crop: bool = False, recompute_bbox: bool = False, bbox_clip_border: bool = True) -> None: if crop_type not in [ 'relative_range', 'relative', 'absolute', 'absolute_range' ]: raise ValueError(f'Invalid crop_type {crop_type}.') if crop_type in ['absolute', 'absolute_range']: assert crop_size[0] > 0 and crop_size[1] > 0 assert isinstance(crop_size[0], int) and isinstance( crop_size[1], int) if crop_type == 'absolute_range': assert crop_size[0] <= crop_size[1] else: assert 0 < crop_size[0] <= 1 and 0 < crop_size[1] <= 1 self.crop_size = crop_size self.crop_type = crop_type self.allow_negative_crop = allow_negative_crop self.bbox_clip_border = bbox_clip_border self.recompute_bbox = recompute_bbox def _crop_data(self, results: dict, crop_size: Tuple[int, int], allow_negative_crop: bool) -> Union[dict, None]: """Function to randomly crop images, bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. crop_size (Tuple[int, int]): Expected absolute size after cropping, (h, w). allow_negative_crop (bool): Whether to allow a crop that does not contain any bbox area. Returns: results (Union[dict, None]): Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. None will be returned when there is no valid bbox after cropping. """ assert crop_size[0] > 0 and crop_size[1] > 0 img = results['img'] margin_h = max(img.shape[0] - crop_size[0], 0) margin_w = max(img.shape[1] - crop_size[1], 0) offset_h, offset_w = self._rand_offset((margin_h, margin_w)) crop_y1, crop_y2 = offset_h, offset_h + crop_size[0] crop_x1, crop_x2 = offset_w, offset_w + crop_size[1] # Record the warp matrix for the RandomCrop warp_mat = np.array([[1, 0, -offset_w], [0, 1, -offset_h], [0, 0, 1]], dtype=np.float32) if results.get('warp_mat', None) is None: results['warp_mat'] = warp_mat else: results['warp_mat'] = warp_mat @ results['warp_mat'] # crop the image img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] img_shape = img.shape results['img'] = img results['img_shape'] = img_shape[:2] # crop bboxes accordingly and clip to the image boundary if results.get('bbox', None) is not None: distances = (-offset_w, -offset_h) bboxes = results['bbox'] bboxes = bboxes + np.tile(np.asarray(distances), 2) if self.bbox_clip_border: bboxes[..., 0::2] = bboxes[..., 0::2].clip(0, img_shape[1]) bboxes[..., 1::2] = bboxes[..., 1::2].clip(0, img_shape[0]) valid_inds = (bboxes[..., 0] < img_shape[1]) & \ (bboxes[..., 1] < img_shape[0]) & \ (bboxes[..., 2] > 0) & \ (bboxes[..., 3] > 0) # If the crop does not contain any gt-bbox area and # allow_negative_crop is False, skip this image. if (not valid_inds.any() and not allow_negative_crop): return None results['bbox'] = bboxes[valid_inds] meta_keys = [ 'bbox_score', 'id', 'category_id', 'raw_ann_info', 'iscrowd' ] for key in meta_keys: if results.get(key): if isinstance(results[key], list): results[key] = np.asarray( results[key])[valid_inds].tolist() else: results[key] = results[key][valid_inds] if results.get('keypoints', None) is not None: keypoints = results['keypoints'] distances = np.asarray(distances).reshape(1, 1, 2) keypoints = keypoints + distances if self.bbox_clip_border: keypoints_outside_x = keypoints[:, :, 0] < 0 keypoints_outside_y = keypoints[:, :, 1] < 0 keypoints_outside_width = keypoints[:, :, 0] > img_shape[1] keypoints_outside_height = keypoints[:, :, 1] > img_shape[0] kpt_outside = np.logical_or.reduce( (keypoints_outside_x, keypoints_outside_y, keypoints_outside_width, keypoints_outside_height)) results['keypoints_visible'][kpt_outside] *= 0 keypoints[:, :, 0] = keypoints[:, :, 0].clip(0, img_shape[1]) keypoints[:, :, 1] = keypoints[:, :, 1].clip(0, img_shape[0]) results['keypoints'] = keypoints[valid_inds] results['keypoints_visible'] = results['keypoints_visible'][ valid_inds] if results.get('segmentation', None) is not None: results['segmentation'] = results['segmentation'][ crop_y1:crop_y2, crop_x1:crop_x2] if results.get('masks', None) is not None: results['masks'] = results['masks'][valid_inds.nonzero( )[0]].crop(np.asarray([crop_x1, crop_y1, crop_x2, crop_y2])) if self.recompute_bbox: results['bbox'] = results['masks'].get_bboxes( type(results['bbox'])) return results @cache_randomness def _rand_offset(self, margin: Tuple[int, int]) -> Tuple[int, int]: """Randomly generate crop offset. Args: margin (Tuple[int, int]): The upper bound for the offset generated randomly. Returns: Tuple[int, int]: The random offset for the crop. """ margin_h, margin_w = margin offset_h = np.random.randint(0, margin_h + 1) offset_w = np.random.randint(0, margin_w + 1) return offset_h, offset_w @cache_randomness def _get_crop_size(self, image_size: Tuple[int, int]) -> Tuple[int, int]: """Randomly generates the absolute crop size based on `crop_type` and `image_size`. Args: image_size (Tuple[int, int]): (h, w). Returns: crop_size (Tuple[int, int]): (crop_h, crop_w) in absolute pixels. """ h, w = image_size if self.crop_type == 'absolute': return min(self.crop_size[1], h), min(self.crop_size[0], w) elif self.crop_type == 'absolute_range': crop_h = np.random.randint( min(h, self.crop_size[0]), min(h, self.crop_size[1]) + 1) crop_w = np.random.randint( min(w, self.crop_size[0]), min(w, self.crop_size[1]) + 1) return crop_h, crop_w elif self.crop_type == 'relative': crop_w, crop_h = self.crop_size return int(h * crop_h + 0.5), int(w * crop_w + 0.5) else: # 'relative_range' crop_size = np.asarray(self.crop_size, dtype=np.float32) crop_h, crop_w = crop_size + np.random.rand(2) * (1 - crop_size) return int(h * crop_h + 0.5), int(w * crop_w + 0.5)
[docs] def transform(self, results: dict) -> Union[dict, None]: """Transform function to randomly crop images, bounding boxes, masks, semantic segmentation maps. Args: results (dict): Result dict from loading pipeline. Returns: results (Union[dict, None]): Randomly cropped results, 'img_shape' key in result dict is updated according to crop size. None will be returned when there is no valid bbox after cropping. """ image_size = results['img'].shape[:2] crop_size = self._get_crop_size(image_size) results = self._crop_data(results, crop_size, self.allow_negative_crop) return results
[docs]@TRANSFORMS.register_module() class BottomupRandomChoiceResize(BaseTransform): """Resize images & bbox & mask from a list of multiple scales. This transform resizes the input image to some scale. Bboxes and masks are then resized with the same scale factor. Resize scale will be randomly selected from ``scales``. How to choose the target scale to resize the image will follow the rules below: - if `scale` is a list of tuple, the target scale is sampled from the list uniformally. - if `scale` is a tuple, the target scale will be set to the tuple. Required Keys: - img - bbox - keypoints Modified Keys: - img - img_shape - bbox - keypoints Added Keys: - scale - scale_factor - scale_idx Args: scales (Union[list, Tuple]): Images scales for resizing. **resize_kwargs: Other keyword arguments for the ``resize_type``. """ def __init__( self, scales: Sequence[Union[int, Tuple]], keep_ratio: bool = False, clip_object_border: bool = True, backend: str = 'cv2', **resize_kwargs, ) -> None: super().__init__() if isinstance(scales, list): self.scales = scales else: self.scales = [scales] self.keep_ratio = keep_ratio self.clip_object_border = clip_object_border self.backend = backend @cache_randomness def _random_select(self) -> Tuple[int, int]: """Randomly select an scale from given candidates. Returns: (tuple, int): Returns a tuple ``(scale, scale_dix)``, where ``scale`` is the selected image scale and ``scale_idx`` is the selected index in the given candidates. """ scale_idx = np.random.randint(len(self.scales)) scale = self.scales[scale_idx] return scale, scale_idx def _resize_img(self, results: dict) -> None: """Resize images with ``self.scale``.""" if self.keep_ratio: img, scale_factor = imrescale( results['img'], self.scale, interpolation='bilinear', return_scale=True, backend=self.backend) # the w_scale and h_scale has minor difference # a real fix should be done in the mmcv.imrescale in the future new_h, new_w = img.shape[:2] h, w = results['img'].shape[:2] w_scale = new_w / w h_scale = new_h / h else: img, w_scale, h_scale = imresize( results['img'], self.scale, interpolation='bilinear', return_scale=True, backend=self.backend) results['img'] = img results['img_shape'] = img.shape[:2] results['scale_factor'] = (w_scale, h_scale) results['input_size'] = img.shape[:2] w, h = results['ori_shape'] center = np.array([w / 2, h / 2], dtype=np.float32) scale = np.array([w, h], dtype=np.float32) results['input_center'] = center results['input_scale'] = scale def _resize_bboxes(self, results: dict) -> None: """Resize bounding boxes with ``self.scale``.""" if results.get('bbox', None) is not None: bboxes = results['bbox'] * np.tile( np.array(results['scale_factor']), 2) if self.clip_object_border: bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0, results['img_shape'][1]) bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0, results['img_shape'][0]) results['bbox'] = bboxes def _resize_keypoints(self, results: dict) -> None: """Resize keypoints with ``self.scale``.""" if results.get('keypoints', None) is not None: keypoints = results['keypoints'] keypoints[:, :, :2] = keypoints[:, :, :2] * np.array( results['scale_factor']) if self.clip_object_border: keypoints[:, :, 0] = np.clip(keypoints[:, :, 0], 0, results['img_shape'][1]) keypoints[:, :, 1] = np.clip(keypoints[:, :, 1], 0, results['img_shape'][0]) results['keypoints'] = keypoints
[docs] def transform(self, results: dict) -> dict: """Apply resize transforms on results from a list of scales. Args: results (dict): Result dict contains the data to transform. Returns: dict: Resized results, 'img', 'bbox', 'keypoints', 'scale', 'scale_factor', 'img_shape', and 'keep_ratio' keys are updated in result dict. """ target_scale, scale_idx = self._random_select() self.scale = target_scale self._resize_img(results) self._resize_bboxes(results) self._resize_keypoints(results) results['scale_idx'] = scale_idx return results
Read the Docs v: latest
Versions
latest
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.