Shortcuts

Source code for mmpose.datasets.transforms.common_transforms

# Copyright (c) OpenMMLab. All rights reserved.
import warnings
from copy import deepcopy
from typing import Dict, List, Optional, Sequence, Tuple, Union

import cv2
import mmcv
import mmengine
import numpy as np
from mmcv.image import imflip
from mmcv.transforms import BaseTransform
from mmcv.transforms.utils import avoid_cache_randomness, cache_randomness
from mmengine import is_list_of
from mmengine.dist import get_dist_info
from scipy.stats import truncnorm

from mmpose.codecs import *  # noqa: F401, F403
from mmpose.registry import KEYPOINT_CODECS, TRANSFORMS
from mmpose.structures.bbox import bbox_xyxy2cs, flip_bbox
from mmpose.structures.keypoint import flip_keypoints
from mmpose.utils.typing import MultiConfig

try:
    import albumentations
except ImportError:
    albumentations = None

Number = Union[int, float]


[docs]@TRANSFORMS.register_module() class GetBBoxCenterScale(BaseTransform): """Convert bboxes from [x, y, w, h] to center and scale. The center is the coordinates of the bbox center, and the scale is the bbox width and height normalized by a scale factor. Required Keys: - bbox Added Keys: - bbox_center - bbox_scale Args: padding (float): The bbox padding scale that will be multilied to `bbox_scale`. Defaults to 1.25 """ def __init__(self, padding: float = 1.25) -> None: super().__init__() self.padding = padding
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`GetBBoxCenterScale`. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): The result dict Returns: dict: The result dict. """ if 'bbox_center' in results and 'bbox_scale' in results: rank, _ = get_dist_info() if rank == 0: warnings.warn('Use the existing "bbox_center" and "bbox_scale"' '. The padding will still be applied.') results['bbox_scale'] = results['bbox_scale'] * self.padding else: bbox = results['bbox'] center, scale = bbox_xyxy2cs(bbox, padding=self.padding) results['bbox_center'] = center results['bbox_scale'] = scale return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ + f'(padding={self.padding})' return repr_str
[docs]@TRANSFORMS.register_module() class RandomFlip(BaseTransform): """Randomly flip the image, bbox and keypoints. Required Keys: - img - img_shape - flip_indices - input_size (optional) - bbox (optional) - bbox_center (optional) - keypoints (optional) - keypoints_visible (optional) - img_mask (optional) Modified Keys: - img - bbox (optional) - bbox_center (optional) - keypoints (optional) - keypoints_visible (optional) - img_mask (optional) Added Keys: - flip - flip_direction Args: prob (float | list[float]): The flipping probability. If a list is given, the argument `direction` should be a list with the same length. And each element in `prob` indicates the flipping probability of the corresponding one in ``direction``. Defaults to 0.5 direction (str | list[str]): The flipping direction. Options are ``'horizontal'``, ``'vertical'`` and ``'diagonal'``. If a list is is given, each data sample's flipping direction will be sampled from a distribution determined by the argument ``prob``. Defaults to ``'horizontal'``. """ def __init__(self, prob: Union[float, List[float]] = 0.5, direction: Union[str, List[str]] = 'horizontal') -> None: if isinstance(prob, list): assert is_list_of(prob, float) assert 0 <= sum(prob) <= 1 elif isinstance(prob, float): assert 0 <= prob <= 1 else: raise ValueError(f'probs must be float or list of float, but \ got `{type(prob)}`.') self.prob = prob valid_directions = ['horizontal', 'vertical', 'diagonal'] if isinstance(direction, str): assert direction in valid_directions elif isinstance(direction, list): assert is_list_of(direction, str) assert set(direction).issubset(set(valid_directions)) else: raise ValueError(f'direction must be either str or list of str, \ but got `{type(direction)}`.') self.direction = direction if isinstance(prob, list): assert len(prob) == len(self.direction) @cache_randomness def _choose_direction(self) -> str: """Choose the flip direction according to `prob` and `direction`""" if isinstance(self.direction, List) and not isinstance(self.direction, str): # None means non-flip direction_list: list = list(self.direction) + [None] elif isinstance(self.direction, str): # None means non-flip direction_list = [self.direction, None] if isinstance(self.prob, list): non_prob: float = 1 - sum(self.prob) prob_list = self.prob + [non_prob] elif isinstance(self.prob, float): non_prob = 1. - self.prob # exclude non-flip single_ratio = self.prob / (len(direction_list) - 1) prob_list = [single_ratio] * (len(direction_list) - 1) + [non_prob] cur_dir = np.random.choice(direction_list, p=prob_list) return cur_dir
[docs] def transform(self, results: dict) -> dict: """The transform function of :class:`RandomFlip`. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): The result dict Returns: dict: The result dict. """ flip_dir = self._choose_direction() if flip_dir is None: results['flip'] = False results['flip_direction'] = None else: results['flip'] = True results['flip_direction'] = flip_dir h, w = results.get('input_size', results['img_shape']) # flip image and mask if isinstance(results['img'], list): results['img'] = [ imflip(img, direction=flip_dir) for img in results['img'] ] else: results['img'] = imflip(results['img'], direction=flip_dir) if 'img_mask' in results: results['img_mask'] = imflip( results['img_mask'], direction=flip_dir) # flip bboxes if results.get('bbox', None) is not None: results['bbox'] = flip_bbox( results['bbox'], image_size=(w, h), bbox_format='xyxy', direction=flip_dir) if results.get('bbox_center', None) is not None: results['bbox_center'] = flip_bbox( results['bbox_center'], image_size=(w, h), bbox_format='center', direction=flip_dir) # flip keypoints if results.get('keypoints', None) is not None: keypoints, keypoints_visible = flip_keypoints( results['keypoints'], results.get('keypoints_visible', None), image_size=(w, h), flip_indices=results['flip_indices'], direction=flip_dir) results['keypoints'] = keypoints results['keypoints_visible'] = keypoints_visible return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += f'(prob={self.prob}, ' repr_str += f'direction={self.direction})' return repr_str
[docs]@TRANSFORMS.register_module() class RandomHalfBody(BaseTransform): """Data augmentation with half-body transform that keeps only the upper or lower body at random. Required Keys: - keypoints - keypoints_visible - upper_body_ids - lower_body_ids Modified Keys: - bbox - bbox_center - bbox_scale Args: min_total_keypoints (int): The minimum required number of total valid keypoints of a person to apply half-body transform. Defaults to 8 min_half_keypoints (int): The minimum required number of valid half-body keypoints of a person to apply half-body transform. Defaults to 2 padding (float): The bbox padding scale that will be multilied to `bbox_scale`. Defaults to 1.5 prob (float): The probability to apply half-body transform when the keypoint number meets the requirement. Defaults to 0.3 """ def __init__(self, min_total_keypoints: int = 9, min_upper_keypoints: int = 2, min_lower_keypoints: int = 3, padding: float = 1.5, prob: float = 0.3, upper_prioritized_prob: float = 0.7) -> None: super().__init__() self.min_total_keypoints = min_total_keypoints self.min_upper_keypoints = min_upper_keypoints self.min_lower_keypoints = min_lower_keypoints self.padding = padding self.prob = prob self.upper_prioritized_prob = upper_prioritized_prob def _get_half_body_bbox(self, keypoints: np.ndarray, half_body_ids: List[int] ) -> Tuple[np.ndarray, np.ndarray]: """Get half-body bbox center and scale of a single instance. Args: keypoints (np.ndarray): Keypoints in shape (K, D) upper_body_ids (list): The list of half-body keypont indices Returns: tuple: A tuple containing half-body bbox center and scale - center: Center (x, y) of the bbox - scale: Scale (w, h) of the bbox """ selected_keypoints = keypoints[half_body_ids] center = selected_keypoints.mean(axis=0)[:2] x1, y1 = selected_keypoints.min(axis=0) x2, y2 = selected_keypoints.max(axis=0) w = x2 - x1 h = y2 - y1 scale = np.array([w, h], dtype=center.dtype) * self.padding return center, scale @cache_randomness def _random_select_half_body(self, keypoints_visible: np.ndarray, upper_body_ids: List[int], lower_body_ids: List[int] ) -> List[Optional[List[int]]]: """Randomly determine whether applying half-body transform and get the half-body keyponit indices of each instances. Args: keypoints_visible (np.ndarray, optional): The visibility of keypoints in shape (N, K, 1) or (N, K, 2). upper_body_ids (list): The list of upper body keypoint indices lower_body_ids (list): The list of lower body keypoint indices Returns: list[list[int] | None]: The selected half-body keypoint indices of each instance. ``None`` means not applying half-body transform. """ if keypoints_visible.ndim == 3: keypoints_visible = keypoints_visible[..., 0] half_body_ids = [] for visible in keypoints_visible: if visible.sum() < self.min_total_keypoints: indices = None elif np.random.rand() > self.prob: indices = None else: upper_valid_ids = [i for i in upper_body_ids if visible[i] > 0] lower_valid_ids = [i for i in lower_body_ids if visible[i] > 0] num_upper = len(upper_valid_ids) num_lower = len(lower_valid_ids) prefer_upper = np.random.rand() < self.upper_prioritized_prob if (num_upper < self.min_upper_keypoints and num_lower < self.min_lower_keypoints): indices = None elif num_lower < self.min_lower_keypoints: indices = upper_valid_ids elif num_upper < self.min_upper_keypoints: indices = lower_valid_ids else: indices = ( upper_valid_ids if prefer_upper else lower_valid_ids) half_body_ids.append(indices) return half_body_ids
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`HalfBodyTransform`. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): The result dict Returns: dict: The result dict. """ half_body_ids = self._random_select_half_body( keypoints_visible=results['keypoints_visible'], upper_body_ids=results['upper_body_ids'], lower_body_ids=results['lower_body_ids']) bbox_center = [] bbox_scale = [] for i, indices in enumerate(half_body_ids): if indices is None: bbox_center.append(results['bbox_center'][i]) bbox_scale.append(results['bbox_scale'][i]) else: _center, _scale = self._get_half_body_bbox( results['keypoints'][i], indices) bbox_center.append(_center) bbox_scale.append(_scale) results['bbox_center'] = np.stack(bbox_center) results['bbox_scale'] = np.stack(bbox_scale) return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += f'(min_total_keypoints={self.min_total_keypoints}, ' repr_str += f'min_upper_keypoints={self.min_upper_keypoints}, ' repr_str += f'min_lower_keypoints={self.min_lower_keypoints}, ' repr_str += f'padding={self.padding}, ' repr_str += f'prob={self.prob}, ' repr_str += f'upper_prioritized_prob={self.upper_prioritized_prob})' return repr_str
[docs]@TRANSFORMS.register_module() class RandomBBoxTransform(BaseTransform): r"""Rnadomly shift, resize and rotate the bounding boxes. Required Keys: - bbox_center - bbox_scale Modified Keys: - bbox_center - bbox_scale Added Keys: - bbox_rotation Args: shift_factor (float): Randomly shift the bbox in range :math:`[-dx, dx]` and :math:`[-dy, dy]` in X and Y directions, where :math:`dx(y) = x(y)_scale \cdot shift_factor` in pixels. Defaults to 0.16 shift_prob (float): Probability of applying random shift. Defaults to 0.3 scale_factor (Tuple[float, float]): Randomly resize the bbox in range :math:`[scale_factor[0], scale_factor[1]]`. Defaults to (0.5, 1.5) scale_prob (float): Probability of applying random resizing. Defaults to 1.0 rotate_factor (float): Randomly rotate the bbox in :math:`[-rotate_factor, rotate_factor]` in degrees. Defaults to 80.0 rotate_prob (float): Probability of applying random rotation. Defaults to 0.6 """ def __init__(self, shift_factor: float = 0.16, shift_prob: float = 0.3, scale_factor: Tuple[float, float] = (0.5, 1.5), scale_prob: float = 1.0, rotate_factor: float = 80.0, rotate_prob: float = 0.6) -> None: super().__init__() self.shift_factor = shift_factor self.shift_prob = shift_prob self.scale_factor = scale_factor self.scale_prob = scale_prob self.rotate_factor = rotate_factor self.rotate_prob = rotate_prob @staticmethod def _truncnorm(low: float = -1., high: float = 1., size: tuple = ()) -> np.ndarray: """Sample from a truncated normal distribution.""" return truncnorm.rvs(low, high, size=size).astype(np.float32) @cache_randomness def _get_transform_params(self, num_bboxes: int) -> Tuple: """Get random transform parameters. Args: num_bboxes (int): The number of bboxes Returns: tuple: - offset (np.ndarray): Offset factor of each bbox in shape (n, 2) - scale (np.ndarray): Scaling factor of each bbox in shape (n, 1) - rotate (np.ndarray): Rotation degree of each bbox in shape (n,) """ random_v = self._truncnorm(size=(num_bboxes, 4)) offset_v = random_v[:, :2] scale_v = random_v[:, 2:3] rotate_v = random_v[:, 3] # Get shift parameters offset = offset_v * self.shift_factor offset = np.where( np.random.rand(num_bboxes, 1) < self.shift_prob, offset, 0.) # Get scaling parameters scale_min, scale_max = self.scale_factor mu = (scale_max + scale_min) * 0.5 sigma = (scale_max - scale_min) * 0.5 scale = scale_v * sigma + mu scale = np.where( np.random.rand(num_bboxes, 1) < self.scale_prob, scale, 1.) # Get rotation parameters rotate = rotate_v * self.rotate_factor rotate = np.where( np.random.rand(num_bboxes) < self.rotate_prob, rotate, 0.) return offset, scale, rotate
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`RandomBboxTransform`. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): The result dict Returns: dict: The result dict. """ bbox_scale = results['bbox_scale'] num_bboxes = bbox_scale.shape[0] offset, scale, rotate = self._get_transform_params(num_bboxes) results['bbox_center'] = results['bbox_center'] + offset * bbox_scale results['bbox_scale'] = results['bbox_scale'] * scale results['bbox_rotation'] = rotate return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += f'(shift_prob={self.shift_prob}, ' repr_str += f'shift_factor={self.shift_factor}, ' repr_str += f'scale_prob={self.scale_prob}, ' repr_str += f'scale_factor={self.scale_factor}, ' repr_str += f'rotate_prob={self.rotate_prob}, ' repr_str += f'rotate_factor={self.rotate_factor})' return repr_str
[docs]@TRANSFORMS.register_module() @avoid_cache_randomness class Albumentation(BaseTransform): """Albumentation augmentation (pixel-level transforms only). Adds custom pixel-level transformations from Albumentations library. Please visit `https://albumentations.ai/docs/` to get more information. Note: we only support pixel-level transforms. Please visit `https://github.com/albumentations-team/` `albumentations#pixel-level-transforms` to get more information about pixel-level transforms. Required Keys: - img Modified Keys: - img Args: transforms (List[dict]): A list of Albumentation transforms. An example of ``transforms`` is as followed: .. code-block:: python [ dict( type='RandomBrightnessContrast', brightness_limit=[0.1, 0.3], contrast_limit=[0.1, 0.3], p=0.2), dict(type='ChannelShuffle', p=0.1), dict( type='OneOf', transforms=[ dict(type='Blur', blur_limit=3, p=1.0), dict(type='MedianBlur', blur_limit=3, p=1.0) ], p=0.1), ] keymap (dict | None): key mapping from ``input key`` to ``albumentation-style key``. Defaults to None, which will use {'img': 'image'}. """ def __init__(self, transforms: List[dict], keymap: Optional[dict] = None) -> None: if albumentations is None: raise RuntimeError('albumentations is not installed') self.transforms = transforms self.aug = albumentations.Compose( [self.albu_builder(t) for t in self.transforms]) if not keymap: self.keymap_to_albu = { 'img': 'image', } else: self.keymap_to_albu = keymap
[docs] def albu_builder(self, cfg: dict) -> albumentations: """Import a module from albumentations. It resembles some of :func:`build_from_cfg` logic. Args: cfg (dict): Config dict. It should at least contain the key "type". Returns: albumentations.BasicTransform: The constructed transform object """ assert isinstance(cfg, dict) and 'type' in cfg args = cfg.copy() obj_type = args.pop('type') if mmengine.is_str(obj_type): if albumentations is None: raise RuntimeError('albumentations is not installed') rank, _ = get_dist_info() if rank == 0 and not hasattr( albumentations.augmentations.transforms, obj_type): warnings.warn( f'{obj_type} is not pixel-level transformations. ' 'Please use with caution.') obj_cls = getattr(albumentations, obj_type) elif isinstance(obj_type, type): obj_cls = obj_type else: raise TypeError(f'type must be a str, but got {type(obj_type)}') if 'transforms' in args: args['transforms'] = [ self.albu_builder(transform) for transform in args['transforms'] ] return obj_cls(**args)
[docs] def transform(self, results: dict) -> dict: """The transform function of :class:`Albumentation` to apply albumentations transforms. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Return: dict: updated result dict. """ # map result dict to albumentations format results_albu = {} for k, v in self.keymap_to_albu.items(): assert k in results, \ f'The `{k}` is required to perform albumentations transforms' results_albu[v] = results[k] # Apply albumentations transforms results_albu = self.aug(**results_albu) # map the albu results back to the original format for k, v in self.keymap_to_albu.items(): results[k] = results_albu[v] return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ + f'(transforms={self.transforms})' return repr_str
[docs]@TRANSFORMS.register_module() class PhotometricDistortion(BaseTransform): """Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) 8. randomly swap channels Required Keys: - img Modified Keys: - img Args: brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. """ def __init__(self, brightness_delta: int = 32, contrast_range: Sequence[Number] = (0.5, 1.5), saturation_range: Sequence[Number] = (0.5, 1.5), hue_delta: int = 18) -> None: self.brightness_delta = brightness_delta self.contrast_lower, self.contrast_upper = contrast_range self.saturation_lower, self.saturation_upper = saturation_range self.hue_delta = hue_delta @cache_randomness def _random_flags(self) -> Sequence[Number]: """Generate the random flags for subsequent transforms. Returns: Sequence[Number]: a sequence of numbers that indicate whether to do the corresponding transforms. """ # contrast_mode == 0 --> do random contrast first # contrast_mode == 1 --> do random contrast last contrast_mode = np.random.randint(2) # whether to apply brightness distortion brightness_flag = np.random.randint(2) # whether to apply contrast distortion contrast_flag = np.random.randint(2) # the mode to convert color from BGR to HSV hsv_mode = np.random.randint(4) # whether to apply channel swap swap_flag = np.random.randint(2) # the beta in `self._convert` to be added to image array # in brightness distortion brightness_beta = np.random.uniform(-self.brightness_delta, self.brightness_delta) # the alpha in `self._convert` to be multiplied to image array # in contrast distortion contrast_alpha = np.random.uniform(self.contrast_lower, self.contrast_upper) # the alpha in `self._convert` to be multiplied to image array # in saturation distortion to hsv-formatted img saturation_alpha = np.random.uniform(self.saturation_lower, self.saturation_upper) # delta of hue to add to image array in hue distortion hue_delta = np.random.randint(-self.hue_delta, self.hue_delta) # the random permutation of channel order swap_channel_order = np.random.permutation(3) return (contrast_mode, brightness_flag, contrast_flag, hsv_mode, swap_flag, brightness_beta, contrast_alpha, saturation_alpha, hue_delta, swap_channel_order) def _convert(self, img: np.ndarray, alpha: float = 1, beta: float = 0) -> np.ndarray: """Multiple with alpha and add beta with clip. Args: img (np.ndarray): The image array. alpha (float): The random multiplier. beta (float): The random offset. Returns: np.ndarray: The updated image array. """ img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8)
[docs] def transform(self, results: dict) -> dict: """The transform function of :class:`PhotometricDistortion` to perform photometric distortion on images. See ``transform()`` method of :class:`BaseTransform` for details. Args: results (dict): Result dict from the data pipeline. Returns: dict: Result dict with images distorted. """ assert 'img' in results, '`img` is not found in results' img = results['img'] (contrast_mode, brightness_flag, contrast_flag, hsv_mode, swap_flag, brightness_beta, contrast_alpha, saturation_alpha, hue_delta, swap_channel_order) = self._random_flags() # random brightness distortion if brightness_flag: img = self._convert(img, beta=brightness_beta) # contrast_mode == 0 --> do random contrast first # contrast_mode == 1 --> do random contrast last if contrast_mode == 1: if contrast_flag: img = self._convert(img, alpha=contrast_alpha) if hsv_mode: # random saturation/hue distortion img = mmcv.bgr2hsv(img) if hsv_mode == 1 or hsv_mode == 3: # apply saturation distortion to hsv-formatted img img[:, :, 1] = self._convert( img[:, :, 1], alpha=saturation_alpha) if hsv_mode == 2 or hsv_mode == 3: # apply hue distortion to hsv-formatted img img[:, :, 0] = img[:, :, 0].astype(int) + hue_delta img = mmcv.hsv2bgr(img) if contrast_mode == 1: if contrast_flag: img = self._convert(img, alpha=contrast_alpha) # randomly swap channels if swap_flag: img = img[..., swap_channel_order] results['img'] = img return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += (f'(brightness_delta={self.brightness_delta}, ' f'contrast_range=({self.contrast_lower}, ' f'{self.contrast_upper}), ' f'saturation_range=({self.saturation_lower}, ' f'{self.saturation_upper}), ' f'hue_delta={self.hue_delta})') return repr_str
[docs]@TRANSFORMS.register_module() class GenerateTarget(BaseTransform): """Encode keypoints into Target. The generated target is usually the supervision signal of the model learning, e.g. heatmaps or regression labels. Required Keys: - keypoints - keypoints_visible - dataset_keypoint_weights Added Keys: - The keys of the encoded items from the codec will be updated into the results, e.g. ``'heatmaps'`` or ``'keypoint_weights'``. See the specific codec for more details. Args: encoder (dict | list[dict]): The codec config for keypoint encoding. Both single encoder and multiple encoders (given as a list) are supported multilevel (bool): Determine the method to handle multiple encoders. If ``multilevel==True``, generate multilevel targets from a group of encoders of the same type (e.g. multiple :class:`MSRAHeatmap` encoders with different sigma values); If ``multilevel==False``, generate combined targets from a group of different encoders. This argument will have no effect in case of single encoder. Defaults to ``False`` use_dataset_keypoint_weights (bool): Whether use the keypoint weights from the dataset meta information. Defaults to ``False`` target_type (str, deprecated): This argument is deprecated and has no effect. Defaults to ``None`` """ def __init__(self, encoder: MultiConfig, target_type: Optional[str] = None, multilevel: bool = False, use_dataset_keypoint_weights: bool = False) -> None: super().__init__() if target_type is not None: rank, _ = get_dist_info() if rank == 0: warnings.warn( 'The argument `target_type` is deprecated in' ' GenerateTarget. The target type and encoded ' 'keys will be determined by encoder(s).', DeprecationWarning) self.encoder_cfg = deepcopy(encoder) self.multilevel = multilevel self.use_dataset_keypoint_weights = use_dataset_keypoint_weights if isinstance(self.encoder_cfg, list): self.encoder = [ KEYPOINT_CODECS.build(cfg) for cfg in self.encoder_cfg ] else: assert not self.multilevel, ( 'Need multiple encoder configs if ``multilevel==True``') self.encoder = KEYPOINT_CODECS.build(self.encoder_cfg)
[docs] def transform(self, results: Dict) -> Optional[dict]: """The transform function of :class:`GenerateTarget`. See ``transform()`` method of :class:`BaseTransform` for details. """ if results.get('transformed_keypoints', None) is not None: # use keypoints transformed by TopdownAffine keypoints = results['transformed_keypoints'] elif results.get('keypoints', None) is not None: # use original keypoints keypoints = results['keypoints'] else: raise ValueError( 'GenerateTarget requires \'transformed_keypoints\' or' ' \'keypoints\' in the results.') keypoints_visible = results['keypoints_visible'] if keypoints_visible.ndim == 3 and keypoints_visible.shape[2] == 2: keypoints_visible, keypoints_visible_weights = \ keypoints_visible[..., 0], keypoints_visible[..., 1] results['keypoints_visible'] = keypoints_visible results['keypoints_visible_weights'] = keypoints_visible_weights # Encoded items from the encoder(s) will be updated into the results. # Please refer to the document of the specific codec for details about # encoded items. if not isinstance(self.encoder, list): # For single encoding, the encoded items will be directly added # into results. auxiliary_encode_kwargs = { key: results[key] for key in self.encoder.auxiliary_encode_keys } encoded = self.encoder.encode( keypoints=keypoints, keypoints_visible=keypoints_visible, **auxiliary_encode_kwargs) if self.encoder.field_mapping_table: encoded[ 'field_mapping_table'] = self.encoder.field_mapping_table if self.encoder.instance_mapping_table: encoded['instance_mapping_table'] = \ self.encoder.instance_mapping_table if self.encoder.label_mapping_table: encoded[ 'label_mapping_table'] = self.encoder.label_mapping_table else: encoded_list = [] _field_mapping_table = dict() _instance_mapping_table = dict() _label_mapping_table = dict() for _encoder in self.encoder: auxiliary_encode_kwargs = { key: results[key] for key in _encoder.auxiliary_encode_keys } encoded_list.append( _encoder.encode( keypoints=keypoints, keypoints_visible=keypoints_visible, **auxiliary_encode_kwargs)) _field_mapping_table.update(_encoder.field_mapping_table) _instance_mapping_table.update(_encoder.instance_mapping_table) _label_mapping_table.update(_encoder.label_mapping_table) if self.multilevel: # For multilevel encoding, the encoded items from each encoder # should have the same keys. keys = encoded_list[0].keys() if not all(_encoded.keys() == keys for _encoded in encoded_list): raise ValueError( 'Encoded items from all encoders must have the same ' 'keys if ``multilevel==True``.') encoded = { k: [_encoded[k] for _encoded in encoded_list] for k in keys } else: # For combined encoding, the encoded items from different # encoders should have no overlapping items, except for # `keypoint_weights`. If multiple `keypoint_weights` are given, # they will be multiplied as the final `keypoint_weights`. encoded = dict() keypoint_weights = [] for _encoded in encoded_list: for key, value in _encoded.items(): if key == 'keypoint_weights': keypoint_weights.append(value) elif key not in encoded: encoded[key] = value else: raise ValueError( f'Overlapping item "{key}" from multiple ' 'encoders, which is not supported when ' '``multilevel==False``') if keypoint_weights: encoded['keypoint_weights'] = keypoint_weights if _field_mapping_table: encoded['field_mapping_table'] = _field_mapping_table if _instance_mapping_table: encoded['instance_mapping_table'] = _instance_mapping_table if _label_mapping_table: encoded['label_mapping_table'] = _label_mapping_table if self.use_dataset_keypoint_weights and 'keypoint_weights' in encoded: if isinstance(encoded['keypoint_weights'], list): for w in encoded['keypoint_weights']: w = w * results['dataset_keypoint_weights'] else: encoded['keypoint_weights'] = encoded[ 'keypoint_weights'] * results['dataset_keypoint_weights'] results.update(encoded) return results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += (f'(encoder={str(self.encoder_cfg)}, ') repr_str += ('use_dataset_keypoint_weights=' f'{self.use_dataset_keypoint_weights})') return repr_str
[docs]@TRANSFORMS.register_module() class YOLOXHSVRandomAug(BaseTransform): """Apply HSV augmentation to image sequentially. It is referenced from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21. Required Keys: - img Modified Keys: - img Args: hue_delta (int): delta of hue. Defaults to 5. saturation_delta (int): delta of saturation. Defaults to 30. value_delta (int): delat of value. Defaults to 30. """ def __init__(self, hue_delta: int = 5, saturation_delta: int = 30, value_delta: int = 30) -> None: self.hue_delta = hue_delta self.saturation_delta = saturation_delta self.value_delta = value_delta @cache_randomness def _get_hsv_gains(self): hsv_gains = np.random.uniform(-1, 1, 3) * [ self.hue_delta, self.saturation_delta, self.value_delta ] # random selection of h, s, v hsv_gains *= np.random.randint(0, 2, 3) # prevent overflow hsv_gains = hsv_gains.astype(np.int16) return hsv_gains
[docs] def transform(self, results: dict) -> dict: img = results['img'] hsv_gains = self._get_hsv_gains() img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.int16) img_hsv[..., 0] = (img_hsv[..., 0] + hsv_gains[0]) % 180 img_hsv[..., 1] = np.clip(img_hsv[..., 1] + hsv_gains[1], 0, 255) img_hsv[..., 2] = np.clip(img_hsv[..., 2] + hsv_gains[2], 0, 255) cv2.cvtColor(img_hsv.astype(img.dtype), cv2.COLOR_HSV2BGR, dst=img) results['img'] = img return results
def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(hue_delta={self.hue_delta}, ' repr_str += f'saturation_delta={self.saturation_delta}, ' repr_str += f'value_delta={self.value_delta})' return repr_str
[docs]@TRANSFORMS.register_module() class FilterAnnotations(BaseTransform): """Eliminate undesirable annotations based on specific conditions. This class is designed to sift through annotations by examining multiple factors such as the size of the bounding box, the visibility of keypoints, and the overall area. Users can fine-tune the criteria to filter out instances that have excessively small bounding boxes, insufficient area, or an inadequate number of visible keypoints. Required Keys: - bbox (np.ndarray) (optional) - area (np.int64) (optional) - keypoints_visible (np.ndarray) (optional) Modified Keys: - bbox (optional) - bbox_score (optional) - category_id (optional) - keypoints (optional) - keypoints_visible (optional) - area (optional) Args: min_gt_bbox_wh (tuple[float]): Minimum width and height of ground truth boxes. Default: (1., 1.) min_gt_area (int): Minimum foreground area of instances. Default: 1 min_kpt_vis (int): Minimum number of visible keypoints. Default: 1 by_box (bool): Filter instances with bounding boxes not meeting the min_gt_bbox_wh threshold. Default: False by_area (bool): Filter instances with area less than min_gt_area threshold. Default: False by_kpt (bool): Filter instances with keypoints_visible not meeting the min_kpt_vis threshold. Default: True keep_empty (bool): Whether to return None when it becomes an empty bbox after filtering. Defaults to True. """ def __init__(self, min_gt_bbox_wh: Tuple[int, int] = (1, 1), min_gt_area: int = 1, min_kpt_vis: int = 1, by_box: bool = False, by_area: bool = False, by_kpt: bool = True, keep_empty: bool = True) -> None: assert by_box or by_kpt or by_area self.min_gt_bbox_wh = min_gt_bbox_wh self.min_gt_area = min_gt_area self.min_kpt_vis = min_kpt_vis self.by_box = by_box self.by_area = by_area self.by_kpt = by_kpt self.keep_empty = keep_empty
[docs] def transform(self, results: dict) -> Union[dict, None]: """Transform function to filter annotations. Args: results (dict): Result dict. Returns: dict: Updated result dict. """ assert 'keypoints' in results kpts = results['keypoints'] if kpts.shape[0] == 0: return results tests = [] if self.by_box and 'bbox' in results: bbox = results['bbox'] tests.append( ((bbox[..., 2] - bbox[..., 0] > self.min_gt_bbox_wh[0]) & (bbox[..., 3] - bbox[..., 1] > self.min_gt_bbox_wh[1]))) if self.by_area and 'area' in results: area = results['area'] tests.append(area >= self.min_gt_area) if self.by_kpt: kpts_vis = results['keypoints_visible'] if kpts_vis.ndim == 3: kpts_vis = kpts_vis[..., 0] tests.append(kpts_vis.sum(axis=1) >= self.min_kpt_vis) keep = tests[0] for t in tests[1:]: keep = keep & t if not keep.any(): if self.keep_empty: return None keys = ('bbox', 'bbox_score', 'category_id', 'keypoints', 'keypoints_visible', 'area') for key in keys: if key in results: results[key] = results[key][keep] return results
def __repr__(self): return (f'{self.__class__.__name__}(' f'min_gt_bbox_wh={self.min_gt_bbox_wh}, ' f'min_gt_area={self.min_gt_area}, ' f'min_kpt_vis={self.min_kpt_vis}, ' f'by_box={self.by_box}, ' f'by_area={self.by_area}, ' f'by_kpt={self.by_kpt}, ' f'keep_empty={self.keep_empty})')
Read the Docs v: latest
Versions
latest
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.