Shortcuts

Source code for mmpose.datasets.transforms.formatting

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Sequence, Union

import numpy as np
import torch
from mmcv.transforms import BaseTransform
from mmengine.structures import InstanceData, PixelData
from mmengine.utils import is_seq_of

from mmpose.registry import TRANSFORMS
from mmpose.structures import MultilevelPixelData, PoseDataSample


[docs]def image_to_tensor(img: Union[np.ndarray, Sequence[np.ndarray]]) -> torch.torch.Tensor: """Translate image or sequence of images to tensor. Multiple image tensors will be stacked. Args: value (np.ndarray | Sequence[np.ndarray]): The original image or image sequence Returns: torch.Tensor: The output tensor. """ if isinstance(img, np.ndarray): if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img) tensor = torch.from_numpy(img).permute(2, 0, 1).contiguous() else: assert is_seq_of(img, np.ndarray) tensor = torch.stack([image_to_tensor(_img) for _img in img]) return tensor
[docs]def keypoints_to_tensor(keypoints: Union[np.ndarray, Sequence[np.ndarray]] ) -> torch.torch.Tensor: """Translate keypoints or sequence of keypoints to tensor. Multiple keypoints tensors will be stacked. Args: keypoints (np.ndarray | Sequence[np.ndarray]): The keypoints or keypoints sequence. Returns: torch.Tensor: The output tensor. """ if isinstance(keypoints, np.ndarray): keypoints = np.ascontiguousarray(keypoints) tensor = torch.from_numpy(keypoints).contiguous() else: assert is_seq_of(keypoints, np.ndarray) tensor = torch.stack( [keypoints_to_tensor(_keypoints) for _keypoints in keypoints]) return tensor
[docs]@TRANSFORMS.register_module() class PackPoseInputs(BaseTransform): """Pack the inputs data for pose estimation. The ``img_meta`` item is always populated. The contents of the ``img_meta`` dictionary depends on ``meta_keys``. By default it includes: - ``id``: id of the data sample - ``img_id``: id of the image - ``'category_id'``: the id of the instance category - ``img_path``: path to the image file - ``crowd_index`` (optional): measure the crowding level of an image, defined in CrowdPose dataset - ``ori_shape``: original shape of the image as a tuple (h, w, c) - ``img_shape``: shape of the image input to the network as a tuple \ (h, w). Note that images may be zero padded on the \ bottom/right if the batch tensor is larger than this shape. - ``input_size``: the input size to the network - ``flip``: a boolean indicating if image flip transform was used - ``flip_direction``: the flipping direction - ``flip_indices``: the indices of each keypoint's symmetric keypoint - ``raw_ann_info`` (optional): raw annotation of the instance(s) Args: meta_keys (Sequence[str], optional): Meta keys which will be stored in :obj: `PoseDataSample` as meta info. Defaults to ``('id', 'img_id', 'img_path', 'category_id', 'crowd_index, 'ori_shape', 'img_shape', 'input_size', 'input_center', 'input_scale', 'flip', 'flip_direction', 'flip_indices', 'raw_ann_info')`` """ # items in `instance_mapping_table` will be directly packed into # PoseDataSample.gt_instances without converting to Tensor instance_mapping_table = dict( bbox='bboxes', bbox_score='bbox_scores', keypoints='keypoints', keypoints_cam='keypoints_cam', keypoints_visible='keypoints_visible', # In CocoMetric, the area of predicted instances will be calculated # using gt_instances.bbox_scales. To unsure correspondence with # previous version, this key is preserved here. bbox_scale='bbox_scales', # `head_size` is used for computing MpiiPCKAccuracy metric, # namely, PCKh head_size='head_size', ) # items in `field_mapping_table` will be packed into # PoseDataSample.gt_fields and converted to Tensor. These items will be # used for computing losses field_mapping_table = dict( heatmaps='heatmaps', instance_heatmaps='instance_heatmaps', heatmap_mask='heatmap_mask', heatmap_weights='heatmap_weights', displacements='displacements', displacement_weights='displacement_weights') # items in `label_mapping_table` will be packed into # PoseDataSample.gt_instance_labels and converted to Tensor. These items # will be used for computing losses label_mapping_table = dict( keypoint_labels='keypoint_labels', keypoint_weights='keypoint_weights', keypoints_visible_weights='keypoints_visible_weights') def __init__(self, meta_keys=('id', 'img_id', 'img_path', 'category_id', 'crowd_index', 'ori_shape', 'img_shape', 'input_size', 'input_center', 'input_scale', 'flip', 'flip_direction', 'flip_indices', 'raw_ann_info', 'dataset_name'), pack_transformed=False): self.meta_keys = meta_keys self.pack_transformed = pack_transformed
[docs] def transform(self, results: dict) -> dict: """Method to pack the input data. Args: results (dict): Result dict from the data pipeline. Returns: dict: - 'inputs' (obj:`torch.Tensor`): The forward data of models. - 'data_samples' (obj:`PoseDataSample`): The annotation info of the sample. """ # Pack image(s) for 2d pose estimation if 'img' in results: img = results['img'] inputs_tensor = image_to_tensor(img) # Pack keypoints for 3d pose-lifting elif 'lifting_target' in results and 'keypoints' in results: if 'keypoint_labels' in results: keypoints = results['keypoint_labels'] else: keypoints = results['keypoints'] inputs_tensor = keypoints_to_tensor(keypoints) data_sample = PoseDataSample() # pack instance data gt_instances = InstanceData() _instance_mapping_table = results.get('instance_mapping_table', self.instance_mapping_table) for key, packed_key in _instance_mapping_table.items(): if key in results: gt_instances.set_field(results[key], packed_key) # pack `transformed_keypoints` for visualizing data transform # and augmentation results if self.pack_transformed and 'transformed_keypoints' in results: gt_instances.set_field(results['transformed_keypoints'], 'transformed_keypoints') data_sample.gt_instances = gt_instances # pack instance labels gt_instance_labels = InstanceData() _label_mapping_table = results.get('label_mapping_table', self.label_mapping_table) for key, packed_key in _label_mapping_table.items(): if key in results: if isinstance(results[key], list): # A list of labels is usually generated by combined # multiple encoders (See ``GenerateTarget`` in # mmpose/datasets/transforms/common_transforms.py) # In this case, labels in list should have the same # shape and will be stacked. _labels = np.stack(results[key]) gt_instance_labels.set_field(_labels, packed_key) else: gt_instance_labels.set_field(results[key], packed_key) data_sample.gt_instance_labels = gt_instance_labels.to_tensor() # pack fields gt_fields = None _field_mapping_table = results.get('field_mapping_table', self.field_mapping_table) for key, packed_key in _field_mapping_table.items(): if key in results: if isinstance(results[key], list): if gt_fields is None: gt_fields = MultilevelPixelData() else: assert isinstance( gt_fields, MultilevelPixelData ), 'Got mixed single-level and multi-level pixel data.' else: if gt_fields is None: gt_fields = PixelData() else: assert isinstance( gt_fields, PixelData ), 'Got mixed single-level and multi-level pixel data.' gt_fields.set_field(results[key], packed_key) if gt_fields: data_sample.gt_fields = gt_fields.to_tensor() img_meta = {k: results[k] for k in self.meta_keys if k in results} data_sample.set_metainfo(img_meta) packed_results = dict() packed_results['inputs'] = inputs_tensor packed_results['data_samples'] = data_sample return packed_results
def __repr__(self) -> str: """print the basic information of the transform. Returns: str: Formatted string. """ repr_str = self.__class__.__name__ repr_str += f'(meta_keys={self.meta_keys}, ' repr_str += f'pack_transformed={self.pack_transformed})' return repr_str
Read the Docs v: latest
Versions
latest
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.