Source code for mmpose.evaluation.metrics.simple_keypoint_3d_metrics
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Optional, Sequence
import numpy as np
from mmengine.evaluator import BaseMetric
from mmengine.logging import MMLogger
from mmpose.registry import METRICS
from ..functional import keypoint_mpjpe
[docs]@METRICS.register_module()
class SimpleMPJPE(BaseMetric):
"""MPJPE evaluation metric.
Calculate the mean per-joint position error (MPJPE) of keypoints.
Note:
- length of dataset: N
- num_keypoints: K
- number of keypoint dimensions: D (typically D = 2)
Args:
mode (str): Method to align the prediction with the
ground truth. Supported options are:
- ``'mpjpe'``: no alignment will be applied
- ``'p-mpjpe'``: align in the least-square sense in scale
- ``'n-mpjpe'``: align in the least-square sense in
scale, rotation, and translation.
collect_device (str): Device name used for collecting results from
different ranks during distributed training. Must be ``'cpu'`` or
``'gpu'``. Default: ``'cpu'``.
prefix (str, optional): The prefix that will be added in the metric
names to disambiguate homonymous metrics of different evaluators.
If prefix is not provided in the argument, ``self.default_prefix``
will be used instead. Default: ``None``.
skip_list (list, optional): The list of subject and action combinations
to be skipped. Default: [].
"""
ALIGNMENT = {'mpjpe': 'none', 'p-mpjpe': 'procrustes', 'n-mpjpe': 'scale'}
def __init__(self,
mode: str = 'mpjpe',
collect_device: str = 'cpu',
prefix: Optional[str] = None,
skip_list: List[str] = []) -> None:
super().__init__(collect_device=collect_device, prefix=prefix)
allowed_modes = self.ALIGNMENT.keys()
if mode not in allowed_modes:
raise KeyError("`mode` should be 'mpjpe', 'p-mpjpe', or "
f"'n-mpjpe', but got '{mode}'.")
self.mode = mode
self.skip_list = skip_list
[docs] def process(self, data_batch: Sequence[dict],
data_samples: Sequence[dict]) -> None:
"""Process one batch of data samples and predictions. The processed
results should be stored in ``self.results``, which will be used to
compute the metrics when all batches have been processed.
Args:
data_batch (Sequence[dict]): A batch of data
from the dataloader.
data_samples (Sequence[dict]): A batch of outputs from
the model.
"""
for data_sample in data_samples:
# predicted keypoints coordinates, [T, K, D]
pred_coords = data_sample['pred_instances']['keypoints']
if pred_coords.ndim == 4:
pred_coords = np.squeeze(pred_coords, axis=0)
# ground truth data_info
gt = data_sample['gt_instances']
# ground truth keypoints coordinates, [T, K, D]
gt_coords = gt['lifting_target']
# ground truth keypoints_visible, [T, K, 1]
mask = gt['lifting_target_visible'].astype(bool).reshape(
gt_coords.shape[0], -1)
result = {
'pred_coords': pred_coords,
'gt_coords': gt_coords,
'mask': mask,
}
self.results.append(result)
[docs] def compute_metrics(self, results: list) -> Dict[str, float]:
"""Compute the metrics from processed results.
Args:
results (list): The processed results of each batch.
Returns:
Dict[str, float]: The computed metrics. The keys are the names of
the metrics, and the values are the corresponding results.
"""
logger: MMLogger = MMLogger.get_current_instance()
# pred_coords: [N, K, D]
pred_coords = np.concatenate(
[result['pred_coords'] for result in results])
# gt_coords: [N, K, D]
gt_coords = np.concatenate([result['gt_coords'] for result in results])
# mask: [N, K]
mask = np.concatenate([result['mask'] for result in results])
error_name = self.mode.upper()
logger.info(f'Evaluating {self.mode.upper()}...')
return {
error_name:
keypoint_mpjpe(pred_coords, gt_coords, mask,
self.ALIGNMENT[self.mode])
}