Shortcuts

Source code for mmpose.structures.bbox.transforms

# Copyright (c) OpenMMLab. All rights reserved.
import math
from typing import Tuple

import cv2
import numpy as np


[docs]def bbox_xyxy2xywh(bbox_xyxy: np.ndarray) -> np.ndarray: """Transform the bbox format from x1y1x2y2 to xywh. Args: bbox_xyxy (np.ndarray): Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, right, bottom, [score]) Returns: np.ndarray: Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, width, height, [score]) """ bbox_xywh = bbox_xyxy.copy() bbox_xywh[:, 2] = bbox_xywh[:, 2] - bbox_xywh[:, 0] bbox_xywh[:, 3] = bbox_xywh[:, 3] - bbox_xywh[:, 1] return bbox_xywh
[docs]def bbox_xywh2xyxy(bbox_xywh: np.ndarray) -> np.ndarray: """Transform the bbox format from xywh to x1y1x2y2. Args: bbox_xywh (ndarray): Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, width, height, [score]) Returns: np.ndarray: Bounding boxes (with scores), shaped (n, 4) or (n, 5). (left, top, right, bottom, [score]) """ bbox_xyxy = bbox_xywh.copy() bbox_xyxy[:, 2] = bbox_xyxy[:, 2] + bbox_xyxy[:, 0] bbox_xyxy[:, 3] = bbox_xyxy[:, 3] + bbox_xyxy[:, 1] return bbox_xyxy
[docs]def bbox_xyxy2cs(bbox: np.ndarray, padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: """Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (left, top, right, bottom) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2) """ # convert single bbox from (4, ) to (1, 4) dim = bbox.ndim if dim == 1: bbox = bbox[None, :] scale = (bbox[..., 2:] - bbox[..., :2]) * padding center = (bbox[..., 2:] + bbox[..., :2]) * 0.5 if dim == 1: center = center[0] scale = scale[0] return center, scale
[docs]def bbox_xywh2cs(bbox: np.ndarray, padding: float = 1.) -> Tuple[np.ndarray, np.ndarray]: """Transform the bbox format from (x,y,w,h) into (center, scale) Args: bbox (ndarray): Bounding box(es) in shape (4,) or (n, 4), formatted as (x, y, h, w) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: tuple: A tuple containing center and scale. - np.ndarray[float32]: Center (x, y) of the bbox in shape (2,) or (n, 2) - np.ndarray[float32]: Scale (w, h) of the bbox in shape (2,) or (n, 2) """ # convert single bbox from (4, ) to (1, 4) dim = bbox.ndim if dim == 1: bbox = bbox[None, :] x, y, w, h = np.hsplit(bbox, [1, 2, 3]) center = np.hstack([x + w * 0.5, y + h * 0.5]) scale = np.hstack([w, h]) * padding if dim == 1: center = center[0] scale = scale[0] return center, scale
[docs]def bbox_cs2xyxy(center: np.ndarray, scale: np.ndarray, padding: float = 1.) -> np.ndarray: """Transform the bbox format from (center, scale) to (x1,y1,x2,y2). Args: center (ndarray): BBox center (x, y) in shape (2,) or (n, 2) scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: ndarray[float32]: BBox (x1, y1, x2, y2) in shape (4, ) or (n, 4) """ dim = center.ndim assert scale.ndim == dim if dim == 1: center = center[None, :] scale = scale[None, :] wh = scale / padding xy = center - 0.5 * wh bbox = np.hstack((xy, xy + wh)) if dim == 1: bbox = bbox[0] return bbox
[docs]def bbox_cs2xywh(center: np.ndarray, scale: np.ndarray, padding: float = 1.) -> np.ndarray: """Transform the bbox format from (center, scale) to (x,y,w,h). Args: center (ndarray): BBox center (x, y) in shape (2,) or (n, 2) scale (ndarray): BBox scale (w, h) in shape (2,) or (n, 2) padding (float): BBox padding factor that will be multilied to scale. Default: 1.0 Returns: ndarray[float32]: BBox (x, y, w, h) in shape (4, ) or (n, 4) """ dim = center.ndim assert scale.ndim == dim if dim == 1: center = center[None, :] scale = scale[None, :] wh = scale / padding xy = center - 0.5 * wh bbox = np.hstack((xy, wh)) if dim == 1: bbox = bbox[0] return bbox
[docs]def bbox_xyxy2corner(bbox: np.ndarray): """Convert bounding boxes from xyxy format to corner format. Given a numpy array containing bounding boxes in the format (xmin, ymin, xmax, ymax), this function converts the bounding boxes to the corner format, where each box is represented by four corner points (top-left, top-right, bottom-right, bottom-left). Args: bbox (numpy.ndarray): Input array of shape (N, 4) representing N bounding boxes. Returns: numpy.ndarray: An array of shape (N, 4, 2) containing the corner points of the bounding boxes. Example: bbox = np.array([[0, 0, 100, 50], [10, 20, 200, 150]]) corners = bbox_xyxy2corner(bbox) """ dim = bbox.ndim if dim == 1: bbox = bbox[None] bbox = np.tile(bbox, 2).reshape(-1, 4, 2) bbox[:, 1:3, 0] = bbox[:, 0:2, 0] if dim == 1: bbox = bbox[0] return bbox
[docs]def bbox_corner2xyxy(bbox: np.ndarray): """Convert bounding boxes from corner format to xyxy format. Given a numpy array containing bounding boxes in the corner format (four corner points for each box), this function converts the bounding boxes to the (xmin, ymin, xmax, ymax) format. Args: bbox (numpy.ndarray): Input array of shape (N, 4, 2) representing N bounding boxes. Returns: numpy.ndarray: An array of shape (N, 4) containing the bounding boxes in xyxy format. Example: corners = np.array([[[0, 0], [100, 0], [100, 50], [0, 50]], [[10, 20], [200, 20], [200, 150], [10, 150]]]) bbox = bbox_corner2xyxy(corners) """ if bbox.shape[-1] == 8: bbox = bbox.reshape(*bbox.shape[:-1], 4, 2) dim = bbox.ndim if dim == 2: bbox = bbox[None] bbox = np.concatenate((bbox.min(axis=1), bbox.max(axis=1)), axis=1) if dim == 2: bbox = bbox[0] return bbox
[docs]def bbox_clip_border(bbox: np.ndarray, shape: Tuple[int, int]) -> np.ndarray: """Clip bounding box coordinates to fit within a specified shape. Args: bbox (np.ndarray): Bounding box coordinates of shape (..., 4) or (..., 2). shape (Tuple[int, int]): Shape of the image to which bounding boxes are being clipped in the format of (w, h) Returns: np.ndarray: Clipped bounding box coordinates. Example: >>> bbox = np.array([[10, 20, 30, 40], [40, 50, 80, 90]]) >>> shape = (50, 50) # Example image shape >>> clipped_bbox = bbox_clip_border(bbox, shape) """ width, height = shape[:2] if bbox.shape[-1] == 2: bbox[..., 0] = np.clip(bbox[..., 0], a_min=0, a_max=width) bbox[..., 1] = np.clip(bbox[..., 1], a_min=0, a_max=height) else: bbox[..., ::2] = np.clip(bbox[..., ::2], a_min=0, a_max=width) bbox[..., 1::2] = np.clip(bbox[..., 1::2], a_min=0, a_max=height) return bbox
[docs]def flip_bbox(bbox: np.ndarray, image_size: Tuple[int, int], bbox_format: str = 'xywh', direction: str = 'horizontal') -> np.ndarray: """Flip the bbox in the given direction. Args: bbox (np.ndarray): The bounding boxes. The shape should be (..., 4) if ``bbox_format`` is ``'xyxy'`` or ``'xywh'``, and (..., 2) if ``bbox_format`` is ``'center'`` image_size (tuple): The image shape in [w, h] bbox_format (str): The bbox format. Options are ``'xywh'``, ``'xyxy'`` and ``'center'``. direction (str): The flip direction. Options are ``'horizontal'``, ``'vertical'`` and ``'diagonal'``. Defaults to ``'horizontal'`` Returns: np.ndarray: The flipped bounding boxes. """ direction_options = {'horizontal', 'vertical', 'diagonal'} assert direction in direction_options, ( f'Invalid flipping direction "{direction}". ' f'Options are {direction_options}') format_options = {'xywh', 'xyxy', 'center'} assert bbox_format in format_options, ( f'Invalid bbox format "{bbox_format}". ' f'Options are {format_options}') bbox_flipped = bbox.copy() w, h = image_size # TODO: consider using "integer corner" coordinate system if direction == 'horizontal': if bbox_format == 'xywh' or bbox_format == 'center': bbox_flipped[..., 0] = w - bbox[..., 0] - 1 elif bbox_format == 'xyxy': bbox_flipped[..., ::2] = w - bbox[..., -2::-2] - 1 elif direction == 'vertical': if bbox_format == 'xywh' or bbox_format == 'center': bbox_flipped[..., 1] = h - bbox[..., 1] - 1 elif bbox_format == 'xyxy': bbox_flipped[..., 1::2] = h - bbox[..., ::-2] - 1 elif direction == 'diagonal': if bbox_format == 'xywh' or bbox_format == 'center': bbox_flipped[..., :2] = [w, h] - bbox[..., :2] - 1 elif bbox_format == 'xyxy': bbox_flipped[...] = [w, h, w, h] - bbox - 1 bbox_flipped = np.concatenate( (bbox_flipped[..., 2:], bbox_flipped[..., :2]), axis=-1) return bbox_flipped
[docs]def get_udp_warp_matrix( center: np.ndarray, scale: np.ndarray, rot: float, output_size: Tuple[int, int], ) -> np.ndarray: """Calculate the affine transformation matrix under the unbiased constraint. See `UDP (CVPR 2020)`_ for details. Note: - The bbox number: N Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (tuple): Size ([w, h]) of the output image Returns: np.ndarray: A 2x3 transformation matrix .. _`UDP (CVPR 2020)`: https://arxiv.org/abs/1911.07524 """ assert len(center) == 2 assert len(scale) == 2 assert len(output_size) == 2 input_size = center * 2 rot_rad = np.deg2rad(rot) warp_mat = np.zeros((2, 3), dtype=np.float32) scale_x = (output_size[0] - 1) / scale[0] scale_y = (output_size[1] - 1) / scale[1] warp_mat[0, 0] = math.cos(rot_rad) * scale_x warp_mat[0, 1] = -math.sin(rot_rad) * scale_x warp_mat[0, 2] = scale_x * (-0.5 * input_size[0] * math.cos(rot_rad) + 0.5 * input_size[1] * math.sin(rot_rad) + 0.5 * scale[0]) warp_mat[1, 0] = math.sin(rot_rad) * scale_y warp_mat[1, 1] = math.cos(rot_rad) * scale_y warp_mat[1, 2] = scale_y * (-0.5 * input_size[0] * math.sin(rot_rad) - 0.5 * input_size[1] * math.cos(rot_rad) + 0.5 * scale[1]) return warp_mat
[docs]def get_warp_matrix( center: np.ndarray, scale: np.ndarray, rot: float, output_size: Tuple[int, int], shift: Tuple[float, float] = (0., 0.), inv: bool = False, fix_aspect_ratio: bool = True, ) -> np.ndarray: """Calculate the affine transformation matrix that can warp the bbox area in the input image to the output size. Args: center (np.ndarray[2, ]): Center of the bounding box (x, y). scale (np.ndarray[2, ]): Scale of the bounding box wrt [width, height]. rot (float): Rotation angle (degree). output_size (np.ndarray[2, ] | list(2,)): Size of the destination heatmaps. shift (0-100%): Shift translation ratio wrt the width/height. Default (0., 0.). inv (bool): Option to inverse the affine transform direction. (inv=False: src->dst or inv=True: dst->src) fix_aspect_ratio (bool): Whether to fix aspect ratio during transform. Defaults to True. Returns: np.ndarray: A 2x3 transformation matrix """ assert len(center) == 2 assert len(scale) == 2 assert len(output_size) == 2 assert len(shift) == 2 shift = np.array(shift) src_w, src_h = scale[:2] dst_w, dst_h = output_size[:2] rot_rad = np.deg2rad(rot) src_dir = _rotate_point(np.array([src_w * -0.5, 0.]), rot_rad) dst_dir = np.array([dst_w * -0.5, 0.]) src = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale * shift src[1, :] = center + src_dir + scale * shift dst = np.zeros((3, 2), dtype=np.float32) dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir if fix_aspect_ratio: src[2, :] = _get_3rd_point(src[0, :], src[1, :]) dst[2, :] = _get_3rd_point(dst[0, :], dst[1, :]) else: src_dir_2 = _rotate_point(np.array([0., src_h * -0.5]), rot_rad) dst_dir_2 = np.array([0., dst_h * -0.5]) src[2, :] = center + src_dir_2 + scale * shift dst[2, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir_2 if inv: warp_mat = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: warp_mat = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return warp_mat
[docs]def get_pers_warp_matrix(center: np.ndarray, translate: np.ndarray, scale: float, rot: float, shear: np.ndarray) -> np.ndarray: """Compute a perspective warp matrix based on specified transformations. Args: center (np.ndarray): Center of the transformation. translate (np.ndarray): Translation vector. scale (float): Scaling factor. rot (float): Rotation angle in degrees. shear (np.ndarray): Shearing angles in degrees along x and y axes. Returns: np.ndarray: Perspective warp matrix. Example: >>> center = np.array([0, 0]) >>> translate = np.array([10, 20]) >>> scale = 1.2 >>> rot = 30.0 >>> shear = np.array([15.0, 0.0]) >>> warp_matrix = get_pers_warp_matrix(center, translate, scale, rot, shear) """ translate_mat = np.array([[1, 0, translate[0] + center[0]], [0, 1, translate[1] + center[1]], [0, 0, 1]], dtype=np.float32) shear_x = math.radians(shear[0]) shear_y = math.radians(shear[1]) shear_mat = np.array([[1, np.tan(shear_x), 0], [np.tan(shear_y), 1, 0], [0, 0, 1]], dtype=np.float32) rotate_angle = math.radians(rot) rotate_mat = np.array([[np.cos(rotate_angle), -np.sin(rotate_angle), 0], [np.sin(rotate_angle), np.cos(rotate_angle), 0], [0, 0, 1]], dtype=np.float32) scale_mat = np.array([[scale, 0, 0], [0, scale, 0], [0, 0, 1]], dtype=np.float32) recover_center_mat = np.array([[1, 0, -center[0]], [0, 1, -center[1]], [0, 0, 1]], dtype=np.float32) warp_matrix = np.dot( np.dot( np.dot(np.dot(translate_mat, shear_mat), rotate_mat), scale_mat), recover_center_mat) return warp_matrix
def _rotate_point(pt: np.ndarray, angle_rad: float) -> np.ndarray: """Rotate a point by an angle. Args: pt (np.ndarray): 2D point coordinates (x, y) in shape (2, ) angle_rad (float): rotation angle in radian Returns: np.ndarray: Rotated point in shape (2, ) """ sn, cs = np.sin(angle_rad), np.cos(angle_rad) rot_mat = np.array([[cs, -sn], [sn, cs]]) return rot_mat @ pt def _get_3rd_point(a: np.ndarray, b: np.ndarray): """To calculate the affine matrix, three pairs of points are required. This function is used to get the 3rd point, given 2D points a & b. The 3rd point is defined by rotating vector `a - b` by 90 degrees anticlockwise, using b as the rotation center. Args: a (np.ndarray): The 1st point (x,y) in shape (2, ) b (np.ndarray): The 2nd point (x,y) in shape (2, ) Returns: np.ndarray: The 3rd point. """ direction = a - b c = b + np.r_[-direction[1], direction[0]] return c
Read the Docs v: latest
Versions
latest
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.