Shortcuts

Source code for mmpose.visualization.local_visualizer

# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings
from typing import Dict, List, Optional, Tuple, Union

import cv2
import mmcv
import numpy as np
import torch
from mmengine.dist import master_only
from mmengine.structures import InstanceData, PixelData

from mmpose.datasets.datasets.utils import parse_pose_metainfo
from mmpose.registry import VISUALIZERS
from mmpose.structures import PoseDataSample
from .opencv_backend_visualizer import OpencvBackendVisualizer
from .simcc_vis import SimCCVisualizer


def _get_adaptive_scales(areas: np.ndarray,
                         min_area: int = 800,
                         max_area: int = 30000) -> np.ndarray:
    """Get adaptive scales according to areas.

    The scale range is [0.5, 1.0]. When the area is less than
    ``min_area``, the scale is 0.5 while the area is larger than
    ``max_area``, the scale is 1.0.

    Args:
        areas (ndarray): The areas of bboxes or masks with the
            shape of (n, ).
        min_area (int): Lower bound areas for adaptive scales.
            Defaults to 800.
        max_area (int): Upper bound areas for adaptive scales.
            Defaults to 30000.

    Returns:
        ndarray: The adaotive scales with the shape of (n, ).
    """
    scales = 0.5 + (areas - min_area) / (max_area - min_area)
    scales = np.clip(scales, 0.5, 1.0)
    return scales


[docs]@VISUALIZERS.register_module() class PoseLocalVisualizer(OpencvBackendVisualizer): """MMPose Local Visualizer. Args: name (str): Name of the instance. Defaults to 'visualizer'. image (np.ndarray, optional): the origin image to draw. The format should be RGB. Defaults to ``None`` vis_backends (list, optional): Visual backend config list. Defaults to ``None`` save_dir (str, optional): Save file dir for all storage backends. If it is ``None``, the backend storage will not save any data. Defaults to ``None`` bbox_color (str, tuple(int), optional): Color of bbox lines. The tuple of color should be in BGR order. Defaults to ``'green'`` kpt_color (str, tuple(tuple(int)), optional): Color of keypoints. The tuple of color should be in BGR order. Defaults to ``'red'`` link_color (str, tuple(tuple(int)), optional): Color of skeleton. The tuple of color should be in BGR order. Defaults to ``None`` line_width (int, float): The width of lines. Defaults to 1 radius (int, float): The radius of keypoints. Defaults to 4 show_keypoint_weight (bool): Whether to adjust the transparency of keypoints according to their score. Defaults to ``False`` alpha (int, float): The transparency of bboxes. Defaults to ``1.0`` Examples: >>> import numpy as np >>> from mmengine.structures import InstanceData >>> from mmpose.structures import PoseDataSample >>> from mmpose.visualization import PoseLocalVisualizer >>> pose_local_visualizer = PoseLocalVisualizer(radius=1) >>> image = np.random.randint(0, 256, ... size=(10, 12, 3)).astype('uint8') >>> gt_instances = InstanceData() >>> gt_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4], ... [8, 8]]]) >>> gt_pose_data_sample = PoseDataSample() >>> gt_pose_data_sample.gt_instances = gt_instances >>> dataset_meta = {'skeleton_links': [[0, 1], [1, 2], [2, 3]]} >>> pose_local_visualizer.set_dataset_meta(dataset_meta) >>> pose_local_visualizer.add_datasample('image', image, ... gt_pose_data_sample) >>> pose_local_visualizer.add_datasample( ... 'image', image, gt_pose_data_sample, ... out_file='out_file.jpg') >>> pose_local_visualizer.add_datasample( ... 'image', image, gt_pose_data_sample, ... show=True) >>> pred_instances = InstanceData() >>> pred_instances.keypoints = np.array([[[1, 1], [2, 2], [4, 4], ... [8, 8]]]) >>> pred_instances.score = np.array([0.8, 1, 0.9, 1]) >>> pred_pose_data_sample = PoseDataSample() >>> pred_pose_data_sample.pred_instances = pred_instances >>> pose_local_visualizer.add_datasample('image', image, ... gt_pose_data_sample, ... pred_pose_data_sample) """ def __init__(self, name: str = 'visualizer', image: Optional[np.ndarray] = None, vis_backends: Optional[Dict] = None, save_dir: Optional[str] = None, bbox_color: Optional[Union[str, Tuple[int]]] = 'green', kpt_color: Optional[Union[str, Tuple[Tuple[int]]]] = 'red', link_color: Optional[Union[str, Tuple[Tuple[int]]]] = None, text_color: Optional[Union[str, Tuple[int]]] = (255, 255, 255), skeleton: Optional[Union[List, Tuple]] = None, line_width: Union[int, float] = 1, radius: Union[int, float] = 3, show_keypoint_weight: bool = False, backend: str = 'opencv', alpha: float = 1.0): warnings.filterwarnings( 'ignore', message='.*please provide the `save_dir` argument.*', category=UserWarning) super().__init__( name=name, image=image, vis_backends=vis_backends, save_dir=save_dir, backend=backend) self.bbox_color = bbox_color self.kpt_color = kpt_color self.link_color = link_color self.line_width = line_width self.text_color = text_color self.skeleton = skeleton self.radius = radius self.alpha = alpha self.show_keypoint_weight = show_keypoint_weight # Set default value. When calling # `PoseLocalVisualizer().set_dataset_meta(xxx)`, # it will override the default value. self.dataset_meta = {}
[docs] def set_dataset_meta(self, dataset_meta: Dict, skeleton_style: str = 'mmpose'): """Assign dataset_meta to the visualizer. The default visualization settings will be overridden. Args: dataset_meta (dict): meta information of dataset. """ if skeleton_style == 'openpose': dataset_name = dataset_meta['dataset_name'] if dataset_name == 'coco': dataset_meta = parse_pose_metainfo( dict(from_file='configs/_base_/datasets/coco_openpose.py')) elif dataset_name == 'coco_wholebody': dataset_meta = parse_pose_metainfo( dict(from_file='configs/_base_/datasets/' 'coco_wholebody_openpose.py')) else: raise NotImplementedError( f'openpose style has not been ' f'supported for {dataset_name} dataset') if isinstance(dataset_meta, dict): self.dataset_meta = dataset_meta.copy() self.bbox_color = dataset_meta.get('bbox_color', self.bbox_color) self.kpt_color = dataset_meta.get('keypoint_colors', self.kpt_color) self.link_color = dataset_meta.get('skeleton_link_colors', self.link_color) self.skeleton = dataset_meta.get('skeleton_links', self.skeleton) # sometimes self.dataset_meta is manually set, which might be None. # it should be converted to a dict at these times if self.dataset_meta is None: self.dataset_meta = {}
def _draw_instances_bbox(self, image: np.ndarray, instances: InstanceData) -> np.ndarray: """Draw bounding boxes and corresponding labels of GT or prediction. Args: image (np.ndarray): The image to draw. instances (:obj:`InstanceData`): Data structure for instance-level annotations or predictions. Returns: np.ndarray: the drawn image which channel is RGB. """ self.set_image(image) if 'bboxes' in instances: bboxes = instances.bboxes self.draw_bboxes( bboxes, edge_colors=self.bbox_color, alpha=self.alpha, line_widths=self.line_width) else: return self.get_image() if 'labels' in instances and self.text_color is not None: classes = self.dataset_meta.get('classes', None) labels = instances.labels positions = bboxes[:, :2] areas = (bboxes[:, 3] - bboxes[:, 1]) * ( bboxes[:, 2] - bboxes[:, 0]) scales = _get_adaptive_scales(areas) for i, (pos, label) in enumerate(zip(positions, labels)): label_text = classes[ label] if classes is not None else f'class {label}' if isinstance(self.bbox_color, tuple) and max(self.bbox_color) > 1: facecolor = [c / 255.0 for c in self.bbox_color] else: facecolor = self.bbox_color self.draw_texts( label_text, pos, colors=self.text_color, font_sizes=int(13 * scales[i]), vertical_alignments='bottom', bboxes=[{ 'facecolor': facecolor, 'alpha': 0.8, 'pad': 0.7, 'edgecolor': 'none' }]) return self.get_image() def _draw_instances_kpts(self, image: np.ndarray, instances: InstanceData, kpt_thr: float = 0.3, show_kpt_idx: bool = False, skeleton_style: str = 'mmpose'): """Draw keypoints and skeletons (optional) of GT or prediction. Args: image (np.ndarray): The image to draw. instances (:obj:`InstanceData`): Data structure for instance-level annotations or predictions. kpt_thr (float, optional): Minimum threshold of keypoints to be shown. Default: 0.3. show_kpt_idx (bool): Whether to show the index of keypoints. Defaults to ``False`` skeleton_style (str): Skeleton style selection. Defaults to ``'mmpose'`` Returns: np.ndarray: the drawn image which channel is RGB. """ if skeleton_style == 'openpose': return self._draw_instances_kpts_openpose(image, instances, kpt_thr) self.set_image(image) img_h, img_w, _ = image.shape if 'keypoints' in instances: keypoints = instances.get('transformed_keypoints', instances.keypoints) if 'keypoints_visible' in instances: keypoints_visible = instances.keypoints_visible else: keypoints_visible = np.ones(keypoints.shape[:-1]) for kpts, visible in zip(keypoints, keypoints_visible): kpts = np.array(kpts, copy=False) if self.kpt_color is None or isinstance(self.kpt_color, str): kpt_color = [self.kpt_color] * len(kpts) elif len(self.kpt_color) == len(kpts): kpt_color = self.kpt_color else: raise ValueError( f'the length of kpt_color ' f'({len(self.kpt_color)}) does not matches ' f'that of keypoints ({len(kpts)})') # draw links if self.skeleton is not None and self.link_color is not None: if self.link_color is None or isinstance( self.link_color, str): link_color = [self.link_color] * len(self.skeleton) elif len(self.link_color) == len(self.skeleton): link_color = self.link_color else: raise ValueError( f'the length of link_color ' f'({len(self.link_color)}) does not matches ' f'that of skeleton ({len(self.skeleton)})') for sk_id, sk in enumerate(self.skeleton): pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1])) pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1])) if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0 or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or visible[sk[0]] < kpt_thr or visible[sk[1]] < kpt_thr or link_color[sk_id] is None): # skip the link that should not be drawn continue X = np.array((pos1[0], pos2[0])) Y = np.array((pos1[1], pos2[1])) color = link_color[sk_id] if not isinstance(color, str): color = tuple(int(c) for c in color) transparency = self.alpha if self.show_keypoint_weight: transparency *= max( 0, min(1, 0.5 * (visible[sk[0]] + visible[sk[1]]))) self.draw_lines( X, Y, color, line_widths=self.line_width) # draw each point on image for kid, kpt in enumerate(kpts): if visible[kid] < kpt_thr or kpt_color[kid] is None: # skip the point that should not be drawn continue color = kpt_color[kid] if not isinstance(color, str): color = tuple(int(c) for c in color) transparency = self.alpha if self.show_keypoint_weight: transparency *= max(0, min(1, visible[kid])) self.draw_circles( kpt, radius=np.array([self.radius]), face_colors=color, edge_colors=color, alpha=transparency, line_widths=self.radius) if show_kpt_idx: kpt_idx_coords = kpt + [self.radius, -self.radius] self.draw_texts( str(kid), kpt_idx_coords, colors=color, font_sizes=self.radius * 3, vertical_alignments='bottom', horizontal_alignments='center') return self.get_image() def _draw_instances_kpts_openpose(self, image: np.ndarray, instances: InstanceData, kpt_thr: float = 0.3): """Draw keypoints and skeletons (optional) of GT or prediction in openpose style. Args: image (np.ndarray): The image to draw. instances (:obj:`InstanceData`): Data structure for instance-level annotations or predictions. kpt_thr (float, optional): Minimum threshold of keypoints to be shown. Default: 0.3. Returns: np.ndarray: the drawn image which channel is RGB. """ self.set_image(image) img_h, img_w, _ = image.shape if 'keypoints' in instances: keypoints = instances.get('transformed_keypoints', instances.keypoints) if 'keypoints_visible' in instances: keypoints_visible = instances.keypoints_visible else: keypoints_visible = np.ones(keypoints.shape[:-1]) keypoints_info = np.concatenate( (keypoints, keypoints_visible[..., None]), axis=-1) # compute neck joint neck = np.mean(keypoints_info[:, [5, 6]], axis=1) # neck score when visualizing pred neck[:, 2:3] = np.logical_and( keypoints_info[:, 5, 2:3] > kpt_thr, keypoints_info[:, 6, 2:3] > kpt_thr).astype(int) new_keypoints_info = np.insert(keypoints_info, 17, neck, axis=1) mmpose_idx = [17, 6, 8, 10, 7, 9, 12, 14, 16, 13, 15, 2, 1, 4, 3] openpose_idx = [1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17] new_keypoints_info[:, openpose_idx] = \ new_keypoints_info[:, mmpose_idx] keypoints_info = new_keypoints_info keypoints, keypoints_visible = keypoints_info[ ..., :2], keypoints_info[..., 2] for kpts, visible in zip(keypoints, keypoints_visible): kpts = np.array(kpts, copy=False) if self.kpt_color is None or isinstance(self.kpt_color, str): kpt_color = [self.kpt_color] * len(kpts) elif len(self.kpt_color) == len(kpts): kpt_color = self.kpt_color else: raise ValueError( f'the length of kpt_color ' f'({len(self.kpt_color)}) does not matches ' f'that of keypoints ({len(kpts)})') # draw links if self.skeleton is not None and self.link_color is not None: if self.link_color is None or isinstance( self.link_color, str): link_color = [self.link_color] * len(self.skeleton) elif len(self.link_color) == len(self.skeleton): link_color = self.link_color else: raise ValueError( f'the length of link_color ' f'({len(self.link_color)}) does not matches ' f'that of skeleton ({len(self.skeleton)})') for sk_id, sk in enumerate(self.skeleton): pos1 = (int(kpts[sk[0], 0]), int(kpts[sk[0], 1])) pos2 = (int(kpts[sk[1], 0]), int(kpts[sk[1], 1])) if (pos1[0] <= 0 or pos1[0] >= img_w or pos1[1] <= 0 or pos1[1] >= img_h or pos2[0] <= 0 or pos2[0] >= img_w or pos2[1] <= 0 or pos2[1] >= img_h or visible[sk[0]] < kpt_thr or visible[sk[1]] < kpt_thr or link_color[sk_id] is None): # skip the link that should not be drawn continue X = np.array((pos1[0], pos2[0])) Y = np.array((pos1[1], pos2[1])) color = link_color[sk_id] if not isinstance(color, str): color = tuple(int(c) for c in color) transparency = self.alpha if self.show_keypoint_weight: transparency *= max( 0, min(1, 0.5 * (visible[sk[0]] + visible[sk[1]]))) if sk_id <= 16: # body part mX = np.mean(X) mY = np.mean(Y) length = ((Y[0] - Y[1])**2 + (X[0] - X[1])**2)**0.5 transparency = 0.6 angle = math.degrees( math.atan2(Y[0] - Y[1], X[0] - X[1])) polygons = cv2.ellipse2Poly( (int(mX), int(mY)), (int(length / 2), int(self.line_width)), int(angle), 0, 360, 1) self.draw_polygons( polygons, edge_colors=color, face_colors=color, alpha=transparency) else: # hand part self.draw_lines(X, Y, color, line_widths=2) # draw each point on image for kid, kpt in enumerate(kpts): if visible[kid] < kpt_thr or kpt_color[ kid] is None or kpt_color[kid].sum() == 0: # skip the point that should not be drawn continue color = kpt_color[kid] if not isinstance(color, str): color = tuple(int(c) for c in color) transparency = self.alpha if self.show_keypoint_weight: transparency *= max(0, min(1, visible[kid])) # draw smaller dots for face & hand keypoints radius = self.radius // 2 if kid > 17 else self.radius self.draw_circles( kpt, radius=np.array([radius]), face_colors=color, edge_colors=color, alpha=transparency, line_widths=radius) return self.get_image() def _draw_instance_heatmap( self, fields: PixelData, overlaid_image: Optional[np.ndarray] = None, ): """Draw heatmaps of GT or prediction. Args: fields (:obj:`PixelData`): Data structure for pixel-level annotations or predictions. overlaid_image (np.ndarray): The image to draw. Returns: np.ndarray: the drawn image which channel is RGB. """ if 'heatmaps' not in fields: return None heatmaps = fields.heatmaps if isinstance(heatmaps, np.ndarray): heatmaps = torch.from_numpy(heatmaps) if heatmaps.dim() == 3: heatmaps, _ = heatmaps.max(dim=0) heatmaps = heatmaps.unsqueeze(0) out_image = self.draw_featmap(heatmaps, overlaid_image) return out_image def _draw_instance_xy_heatmap( self, fields: PixelData, overlaid_image: Optional[np.ndarray] = None, n: int = 20, ): """Draw heatmaps of GT or prediction. Args: fields (:obj:`PixelData`): Data structure for pixel-level annotations or predictions. overlaid_image (np.ndarray): The image to draw. n (int): Number of keypoint, up to 20. Returns: np.ndarray: the drawn image which channel is RGB. """ if 'heatmaps' not in fields: return None heatmaps = fields.heatmaps _, h, w = heatmaps.shape if isinstance(heatmaps, np.ndarray): heatmaps = torch.from_numpy(heatmaps) out_image = SimCCVisualizer().draw_instance_xy_heatmap( heatmaps, overlaid_image, n) out_image = cv2.resize(out_image[:, :, ::-1], (w, h)) return out_image
[docs] @master_only def add_datasample(self, name: str, image: np.ndarray, data_sample: PoseDataSample, draw_gt: bool = True, draw_pred: bool = True, draw_heatmap: bool = False, draw_bbox: bool = False, show_kpt_idx: bool = False, skeleton_style: str = 'mmpose', show: bool = False, wait_time: float = 0, out_file: Optional[str] = None, kpt_thr: float = 0.3, step: int = 0) -> None: """Draw datasample and save to all backends. - If GT and prediction are plotted at the same time, they are displayed in a stitched image where the left image is the ground truth and the right image is the prediction. - If ``show`` is True, all storage backends are ignored, and the images will be displayed in a local window. - If ``out_file`` is specified, the drawn image will be saved to ``out_file``. t is usually used when the display is not available. Args: name (str): The image identifier image (np.ndarray): The image to draw data_sample (:obj:`PoseDataSample`, optional): The data sample to visualize draw_gt (bool): Whether to draw GT PoseDataSample. Default to ``True`` draw_pred (bool): Whether to draw Prediction PoseDataSample. Defaults to ``True`` draw_bbox (bool): Whether to draw bounding boxes. Default to ``False`` draw_heatmap (bool): Whether to draw heatmaps. Defaults to ``False`` show_kpt_idx (bool): Whether to show the index of keypoints. Defaults to ``False`` skeleton_style (str): Skeleton style selection. Defaults to ``'mmpose'`` show (bool): Whether to display the drawn image. Default to ``False`` wait_time (float): The interval of show (s). Defaults to 0 out_file (str): Path to output file. Defaults to ``None`` kpt_thr (float, optional): Minimum threshold of keypoints to be shown. Default: 0.3. step (int): Global step value to record. Defaults to 0 """ gt_img_data = None pred_img_data = None if draw_gt: gt_img_data = image.copy() gt_img_heatmap = None # draw bboxes & keypoints if 'gt_instances' in data_sample: gt_img_data = self._draw_instances_kpts( gt_img_data, data_sample.gt_instances, kpt_thr, show_kpt_idx, skeleton_style) if draw_bbox: gt_img_data = self._draw_instances_bbox( gt_img_data, data_sample.gt_instances) # draw heatmaps if 'gt_fields' in data_sample and draw_heatmap: gt_img_heatmap = self._draw_instance_heatmap( data_sample.gt_fields, image) if gt_img_heatmap is not None: gt_img_data = np.concatenate((gt_img_data, gt_img_heatmap), axis=0) if draw_pred: pred_img_data = image.copy() pred_img_heatmap = None # draw bboxes & keypoints if 'pred_instances' in data_sample: pred_img_data = self._draw_instances_kpts( pred_img_data, data_sample.pred_instances, kpt_thr, show_kpt_idx, skeleton_style) if draw_bbox: pred_img_data = self._draw_instances_bbox( pred_img_data, data_sample.pred_instances) # draw heatmaps if 'pred_fields' in data_sample and draw_heatmap: if 'keypoint_x_labels' in data_sample.pred_instances: pred_img_heatmap = self._draw_instance_xy_heatmap( data_sample.pred_fields, image) else: pred_img_heatmap = self._draw_instance_heatmap( data_sample.pred_fields, image) if pred_img_heatmap is not None: pred_img_data = np.concatenate( (pred_img_data, pred_img_heatmap), axis=0) # merge visualization results if gt_img_data is not None and pred_img_data is not None: if gt_img_heatmap is None and pred_img_heatmap is not None: gt_img_data = np.concatenate((gt_img_data, image), axis=0) elif gt_img_heatmap is not None and pred_img_heatmap is None: pred_img_data = np.concatenate((pred_img_data, image), axis=0) drawn_img = np.concatenate((gt_img_data, pred_img_data), axis=1) elif gt_img_data is not None: drawn_img = gt_img_data else: drawn_img = pred_img_data # It is convenient for users to obtain the drawn image. # For example, the user wants to obtain the drawn image and # save it as a video during video inference. self.set_image(drawn_img) if show: self.show(drawn_img, win_name=name, wait_time=wait_time) if out_file is not None: mmcv.imwrite(drawn_img[..., ::-1], out_file) else: # save drawn_img to backends self.add_image(name, drawn_img, step) return self.get_image()
Read the Docs v: latest
Versions
latest
0.x
dev-1.x
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.