Animal 2D Keypoint¶
Zebra Dataset¶
Topdown Heatmap + Resnet on Zebra¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
Grévy’s Zebra (Elife'2019)
@article{graving2019deepposekit,
title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
journal={Elife},
volume={8},
pages={e47994},
year={2019},
publisher={eLife Sciences Publications Limited}
}
Results on Grévy’s Zebra test set
Arch | Input Size | PCK@0.2 | AUC | EPE | ckpt | log |
---|---|---|---|---|---|---|
pose_resnet_50 | 160x160 | 1.000 | 0.914 | 1.87 | ckpt | log |
pose_resnet_101 | 160x160 | 1.000 | 0.915 | 1.83 | ckpt | log |
pose_resnet_152 | 160x160 | 1.000 | 0.921 | 1.67 | ckpt | log |
Ap10k Dataset¶
Topdown Heatmap + Resnet on Ap10k¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
AP-10K (NeurIPS'2021)
@misc{yu2021ap10k,
title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
year={2021},
eprint={2108.12617},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Results on AP-10K validation set
Arch | Input Size | AP | AP50 | AP75 | APM | APL | ckpt | log |
---|---|---|---|---|---|---|---|---|
pose_resnet_50 | 256x256 | 0.680 | 0.926 | 0.738 | 0.552 | 0.687 | ckpt | log |
pose_resnet_101 | 256x256 | 0.681 | 0.921 | 0.751 | 0.545 | 0.690 | ckpt | log |
Topdown Heatmap + Cspnext + Udp on Ap10k¶
RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
AP-10K (NeurIPS'2021)
@misc{yu2021ap10k,
title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
year={2021},
eprint={2108.12617},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Results on AP-10K validation set
Arch | Input Size | AP | AP50 | AP75 | APM | APL | ckpt | log |
---|---|---|---|---|---|---|---|---|
pose_cspnext_m | 256x256 | 0.703 | 0.944 | 0.776 | 0.513 | 0.710 | ckpt | log |
Topdown Heatmap + Hrnet on Ap10k¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
AP-10K (NeurIPS'2021)
@misc{yu2021ap10k,
title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
year={2021},
eprint={2108.12617},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Results on AP-10K validation set
Arch | Input Size | AP | AP50 | AP75 | APM | APL | ckpt | log |
---|---|---|---|---|---|---|---|---|
pose_hrnet_w32 | 256x256 | 0.722 | 0.935 | 0.789 | 0.557 | 0.729 | ckpt | log |
pose_hrnet_w48 | 256x256 | 0.728 | 0.936 | 0.802 | 0.577 | 0.735 | ckpt | log |
Rtmpose + Rtmpose on Ap10k¶
AP-10K (NeurIPS'2021)
@misc{yu2021ap10k,
title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
year={2021},
eprint={2108.12617},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Results on AP-10K validation set
Arch | Input Size | AP | AP50 | AP75 | APM | APL | ckpt | log |
---|---|---|---|---|---|---|---|---|
rtmpose-m | 256x256 | 0.722 | 0.939 | 0.788 | 0.569 | 0.728 | ckpt | log |
Animalpose Dataset¶
Topdown Heatmap + Resnet on Animalpose¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
Animal-Pose (ICCV'2019)
@InProceedings{Cao_2019_ICCV,
author = {Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing},
title = {Cross-Domain Adaptation for Animal Pose Estimation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
Results on AnimalPose validation set (1117 instances)
Arch | Input Size | AP | AP50 | AP75 | AR | AR50 | ckpt | log |
---|---|---|---|---|---|---|---|---|
pose_resnet_50 | 256x256 | 0.691 | 0.947 | 0.770 | 0.736 | 0.955 | ckpt | log |
pose_resnet_101 | 256x256 | 0.696 | 0.948 | 0.774 | 0.736 | 0.951 | ckpt | log |
pose_resnet_152 | 256x256 | 0.704 | 0.938 | 0.786 | 0.748 | 0.946 | ckpt | log |
Topdown Heatmap + Hrnet on Animalpose¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
Animal-Pose (ICCV'2019)
@InProceedings{Cao_2019_ICCV,
author = {Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing},
title = {Cross-Domain Adaptation for Animal Pose Estimation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
Results on AnimalPose validation set (1117 instances)
Arch | Input Size | AP | AP50 | AP75 | AR | AR50 | ckpt | log |
---|---|---|---|---|---|---|---|---|
pose_hrnet_w32 | 256x256 | 0.740 | 0.959 | 0.833 | 0.780 | 0.965 | ckpt | log |
pose_hrnet_w48 | 256x256 | 0.738 | 0.958 | 0.831 | 0.778 | 0.962 | ckpt | log |
Locust Dataset¶
Topdown Heatmap + Resnet on Locust¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
Desert Locust (Elife'2019)
@article{graving2019deepposekit,
title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
journal={Elife},
volume={8},
pages={e47994},
year={2019},
publisher={eLife Sciences Publications Limited}
}
Results on Desert Locust test set
Arch | Input Size | PCK@0.2 | AUC | EPE | ckpt | log |
---|---|---|---|---|---|---|
pose_resnet_50 | 160x160 | 1.000 | 0.900 | 2.27 | ckpt | log |
pose_resnet_101 | 160x160 | 1.000 | 0.907 | 2.03 | ckpt | log |
pose_resnet_152 | 160x160 | 1.000 | 0.925 | 1.49 | ckpt | log |
Ak Dataset¶
Topdown Heatmap + Hrnet + Animalkingdom on Ak¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
AnimalKingdom (CVPR'2022)
@InProceedings{
Ng_2022_CVPR,
author = {Ng, Xun Long and Ong, Kian Eng and Zheng, Qichen and Ni, Yun and Yeo, Si Yong and Liu, Jun},
title = {Animal Kingdom: A Large and Diverse Dataset for Animal Behavior Understanding},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {19023-19034}
}
Results on AnimalKingdom validation set
Arch | Input Size | PCK(0.05) | Official Repo | Paper | ckpt | log |
---|---|---|---|---|---|---|
P1_hrnet_w32 | 256x256 | 0.6323 | 0.6342 | 0.6606 | ckpt | log |
P2_hrnet_w32 | 256x256 | 0.3741 | 0.3726 | 0.393 | ckpt | log |
P3_mammals_hrnet_w32 | 256x256 | 0.571 | 0.5719 | 0.6159 | ckpt | log |
P3_amphibians_hrnet_w32 | 256x256 | 0.5358 | 0.5432 | 0.5674 | ckpt | log |
P3_reptiles_hrnet_w32 | 256x256 | 0.51 | 0.5 | 0.5606 | ckpt | log |
P3_birds_hrnet_w32 | 256x256 | 0.7671 | 0.7636 | 0.7735 | ckpt | log |
P3_fishes_hrnet_w32 | 256x256 | 0.6406 | 0.636 | 0.6825 | ckpt | log |