Shortcuts

Techniques




RLE (ICCV’2021)


Topdown Regression + Mobilenetv2 + Rle on Coco

DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
  title={Deeppose: Human pose estimation via deep neural networks},
  author={Toshev, Alexander and Szegedy, Christian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1653--1660},
  year={2014}
}
RLE (ICCV'2021)
@inproceedings{li2021human,
  title={Human pose regression with residual log-likelihood estimation},
  author={Li, Jiefeng and Bian, Siyuan and Zeng, Ailing and Wang, Can and Pang, Bo and Liu, Wentao and Lu, Cewu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={11025--11034},
  year={2021}
}
MobilenetV2 (CVPR'2018)
@inproceedings{sandler2018mobilenetv2,
  title={Mobilenetv2: Inverted residuals and linear bottlenecks},
  author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={4510--4520},
  year={2018}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
deeppose_mobilenetv2_rle_pretrained 256x192 0.593 0.836 0.660 0.644 0.877 ckpt log

Topdown Regression + Resnet + Rle on Coco

DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
  title={Deeppose: Human pose estimation via deep neural networks},
  author={Toshev, Alexander and Szegedy, Christian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1653--1660},
  year={2014}
}
RLE (ICCV'2021)
@inproceedings{li2021human,
  title={Human pose regression with residual log-likelihood estimation},
  author={Li, Jiefeng and Bian, Siyuan and Zeng, Ailing and Wang, Can and Pang, Bo and Liu, Wentao and Lu, Cewu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={11025--11034},
  year={2021}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
deeppose_resnet_50_rle 256x192 0.706 0.888 0.776 0.753 0.924 ckpt log
deeppose_resnet_50_rle_pretrained 256x192 0.719 0.891 0.788 0.764 0.925 ckpt log
deeppose_resnet_101_rle 256x192 0.722 0.894 0.794 0.768 0.930 ckpt log
deeppose_resnet_152_rle 256x192 0.731 0.897 0.805 0.777 0.933 ckpt log
deeppose_resnet_152_rle 384x288 0.749 0.901 0.815 0.793 0.935 ckpt log

Topdown Regression + Resnet + Rle on Mpii

DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
  title={Deeppose: Human pose estimation via deep neural networks},
  author={Toshev, Alexander and Szegedy, Christian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1653--1660},
  year={2014}
}
RLE (ICCV'2021)
@inproceedings{li2021human,
  title={Human pose regression with residual log-likelihood estimation},
  author={Li, Jiefeng and Bian, Siyuan and Zeng, Ailing and Wang, Can and Pang, Bo and Liu, Wentao and Lu, Cewu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={11025--11034},
  year={2021}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
MPII (CVPR'2014)
@inproceedings{andriluka14cvpr,
  author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
  title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2014},
  month = {June}
}

Results on MPII val set

Arch Input Size Mean Mean@0.1 ckpt log
deeppose_resnet_50_rle 256x256 0.861 0.277 ckpt log



Wingloss (CVPR’2018)


Topdown Regression + Resnet + Wingloss on WFLW

DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
  title={Deeppose: Human pose estimation via deep neural networks},
  author={Toshev, Alexander and Szegedy, Christian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1653--1660},
  year={2014}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
Wingloss (CVPR'2018)
@inproceedings{feng2018wing,
  title={Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks},
  author={Feng, Zhen-Hua and Kittler, Josef and Awais, Muhammad and Huber, Patrik and Wu, Xiao-Jun},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on},
  year={2018},
  pages ={2235-2245},
  organization={IEEE}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
  title={Look at boundary: A boundary-aware face alignment algorithm},
  author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2129--2138},
  year={2018}
}

Results on WFLW dataset

The model is trained on WFLW train set.

Model Input Size NME ckpt log
ResNet-50+WingLoss 256x256 4.67 ckpt log



FP16 (ArXiv’2017)


Topdown Heatmap + Resnet + Fp16 on Coco

SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
  title={Simple baselines for human pose estimation and tracking},
  author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={466--481},
  year={2018}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
FP16 (ArXiv'2017)
@article{micikevicius2017mixed,
  title={Mixed precision training},
  author={Micikevicius, Paulius and Narang, Sharan and Alben, Jonah and Diamos, Gregory and Elsen, Erich and Garcia, David and Ginsburg, Boris and Houston, Michael and Kuchaiev, Oleksii and Venkatesh, Ganesh and others},
  journal={arXiv preprint arXiv:1710.03740},
  year={2017}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_resnet_50_fp16 256x192 0.716 0.898 0.798 0.772 0.937 ckpt log

Topdown Heatmap + Hrnet + Fp16 on Coco

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
FP16 (ArXiv'2017)
@article{micikevicius2017mixed,
  title={Mixed precision training},
  author={Micikevicius, Paulius and Narang, Sharan and Alben, Jonah and Diamos, Gregory and Elsen, Erich and Garcia, David and Ginsburg, Boris and Houston, Michael and Kuchaiev, Oleksii and Venkatesh, Ganesh and others},
  journal={arXiv preprint arXiv:1710.03740},
  year={2017}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_hrnet_w32_fp16 256x192 0.749 0.907 0.822 0.802 0.946 ckpt log



Albumentations (Information’2020)


Topdown Heatmap + Hrnet + Augmentation on Coco

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
Albumentations (Information'2020)
@article{buslaev2020albumentations,
  title={Albumentations: fast and flexible image augmentations},
  author={Buslaev, Alexander and Iglovikov, Vladimir I and Khvedchenya, Eugene and Parinov, Alex and Druzhinin, Mikhail and Kalinin, Alexandr A},
  journal={Information},
  volume={11},
  number={2},
  pages={125},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
coarsedropout 256x192 0.753 0.908 0.822 0.805 0.944 ckpt log
gridmask 256x192 0.752 0.906 0.825 0.804 0.943 ckpt log
photometric 256x192 0.754 0.908 0.825 0.805 0.943 ckpt log



DarkPose (CVPR’2020)


Topdown Heatmap + Hrnet + Dark on Coco-Wholebody

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
  title={Whole-Body Human Pose Estimation in the Wild},
  author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size Body AP Body AR Foot AP Foot AR Face AP Face AR Hand AP Hand AR Whole AP Whole AR ckpt log
pose_hrnet_w32_dark 256x192 0.693 0.764 0.564 0.674 0.737 0.809 0.503 0.602 0.582 0.671 ckpt log
pose_hrnet_w48_dark+ 384x288 0.742 0.807 0.707 0.806 0.841 0.892 0.602 0.694 0.661 0.743 ckpt log

Note: + means the model is first pre-trained on original COCO dataset, and then fine-tuned on COCO-WholeBody dataset. We find this will lead to better performance.


Topdown Heatmap + Vipnas + Dark on Coco-Wholebody

ViPNAS (CVPR'2021)
@article{xu2021vipnas,
  title={ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search},
  author={Xu, Lumin and Guan, Yingda and Jin, Sheng and Liu, Wentao and Qian, Chen and Luo, Ping and Ouyang, Wanli and Wang, Xiaogang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
  title={Whole-Body Human Pose Estimation in the Wild},
  author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size Body AP Body AR Foot AP Foot AR Face AP Face AR Hand AP Hand AR Whole AP Whole AR ckpt log
S-ViPNAS-MobileNetV3_dark 256x192 0.632 0.710 0.530 0.660 0.672 0.771 0.404 0.519 0.508 0.607 ckpt log
S-ViPNAS-Res50_dark 256x192 0.650 0.732 0.550 0.686 0.684 0.783 0.437 0.554 0.528 0.632 ckpt log

Topdown Heatmap + Hrnet + Dark on Coco

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_hrnet_w32_dark 256x192 0.757 0.907 0.825 0.807 0.943 ckpt log
pose_hrnet_w32_dark 384x288 0.766 0.907 0.829 0.815 0.943 ckpt log
pose_hrnet_w48_dark 256x192 0.764 0.907 0.831 0.814 0.942 ckpt log
pose_hrnet_w48_dark 384x288 0.772 0.911 0.833 0.821 0.948 ckpt log

Topdown Heatmap + Resnet + Dark on Coco

SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
  title={Simple baselines for human pose estimation and tracking},
  author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={466--481},
  year={2018}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_resnet_50_dark 256x192 0.724 0.897 0.797 0.777 0.934 ckpt log
pose_resnet_50_dark 384x288 0.735 0.902 0.801 0.786 0.938 ckpt log
pose_resnet_101_dark 256x192 0.733 0.900 0.810 0.786 0.938 ckpt log
pose_resnet_101_dark 384x288 0.749 0.905 0.818 0.799 0.940 ckpt log
pose_resnet_152_dark 256x192 0.743 0.906 0.819 0.796 0.943 ckpt log
pose_resnet_152_dark 384x288 0.755 0.907 0.825 0.805 0.943 ckpt log

Topdown Heatmap + Hrnet + Dark on Mpii

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
MPII (CVPR'2014)
@inproceedings{andriluka14cvpr,
  author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
  title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2014},
  month = {June}
}

Results on MPII val set

Arch Input Size Mean Mean@0.1 ckpt log
pose_hrnet_w32_dark 256x256 0.904 0.354 ckpt log
pose_hrnet_w48_dark 256x256 0.905 0.360 ckpt log

Topdown Heatmap + Hrnetv2 + Dark on Onehand10k

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
OneHand10K (TCSVT'2019)
@article{wang2018mask,
  title={Mask-pose cascaded cnn for 2d hand pose estimation from single color image},
  author={Wang, Yangang and Peng, Cong and Liu, Yebin},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  volume={29},
  number={11},
  pages={3258--3268},
  year={2018},
  publisher={IEEE}
}

Results on OneHand10K val set

Arch Input Size PCK@0.2 AUC EPE ckpt log
pose_hrnetv2_w18_dark 256x256 0.990 0.572 23.96 ckpt log

Topdown Heatmap + Hrnetv2 + Dark on Rhd2d

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
RHD (ICCV'2017)
@TechReport{zb2017hand,
  author={Christian Zimmermann and Thomas Brox},
  title={Learning to Estimate 3D Hand Pose from Single RGB Images},
  institution={arXiv:1705.01389},
  year={2017},
  note="https://arxiv.org/abs/1705.01389",
  url="https://lmb.informatik.uni-freiburg.de/projects/hand3d/"
}

Results on RHD test set

Arch Input Size PCK@0.2 AUC EPE ckpt log
pose_hrnetv2_w18_dark 256x256 0.992 0.903 2.18 ckpt log

Topdown Heatmap + Hrnetv2 + Dark + Coco + Wholebody + Hand on Coco_wholebody_hand

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO-WholeBody-Hand (ECCV'2020)
@inproceedings{jin2020whole,
  title={Whole-Body Human Pose Estimation in the Wild},
  author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Results on COCO-WholeBody-Hand val set

Arch Input Size PCK@0.2 AUC EPE ckpt log
pose_hrnetv2_w18_dark 256x256 0.814 0.840 4.37 ckpt log

Topdown Heatmap + Hrnetv2 + Dark on WFLW

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
  title={Look at boundary: A boundary-aware face alignment algorithm},
  author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2129--2138},
  year={2018}
}

Results on WFLW dataset

The model is trained on WFLW train.

Arch Input Size NMEtest NMEpose NMEillumination NMEocclusion NMEblur NMEmakeup NMEexpression ckpt log
pose_hrnetv2_w18_dark 256x256 3.98 6.98 3.96 4.78 4.56 3.89 4.29 ckpt log

Topdown Heatmap + Hrnetv2 + Dark + Coco + Wholebody + Face on Coco_wholebody_face

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
  title={Whole-Body Human Pose Estimation in the Wild},
  author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Results on COCO-WholeBody-Face val set

Arch Input Size NME ckpt log
pose_hrnetv2_w18_dark 256x256 0.0513 ckpt log

Topdown Heatmap + Hrnetv2 + Dark on Aflw

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
  title={Distribution-aware coordinate representation for human pose estimation},
  author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={7093--7102},
  year={2020}
}
AFLW (ICCVW'2011)
@inproceedings{koestinger2011annotated,
  title={Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization},
  author={Koestinger, Martin and Wohlhart, Paul and Roth, Peter M and Bischof, Horst},
  booktitle={2011 IEEE international conference on computer vision workshops (ICCV workshops)},
  pages={2144--2151},
  year={2011},
  organization={IEEE}
}

Results on AFLW dataset

The model is trained on AFLW train and evaluated on AFLW full and frontal.

Arch Input Size NMEfull NMEfrontal ckpt log
pose_hrnetv2_w18_dark 256x256 1.35 1.19 ckpt log



FPN (CVPR’2017)


Topdown Heatmap + Swin on Coco

SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
  title={Simple baselines for human pose estimation and tracking},
  author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={466--481},
  year={2018}
}
Swin (ICCV'2021)
@inproceedings{liu2021swin,
  title={Swin transformer: Hierarchical vision transformer using shifted windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={10012--10022},
  year={2021}
}
FPN (CVPR'2017)
@inproceedings{lin2017feature,
  title={Feature pyramid networks for object detection},
  author={Lin, Tsung-Yi and Doll{\'a}r, Piotr and Girshick, Ross and He, Kaiming and Hariharan, Bharath and Belongie, Serge},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2117--2125},
  year={2017}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_swin_t 256x192 0.724 0.901 0.806 0.782 0.940 ckpt log
pose_swin_b 256x192 0.737 0.904 0.820 0.794 0.942 ckpt log
pose_swin_b 384x288 0.759 0.910 0.832 0.811 0.946 ckpt log
pose_swin_l 256x192 0.743 0.906 0.821 0.798 0.943 ckpt log
pose_swin_l 384x288 0.763 0.912 0.830 0.814 0.949 ckpt log



SoftWingloss (TIP’2021)


Topdown Regression + Resnet + Softwingloss on WFLW

DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
  title={Deeppose: Human pose estimation via deep neural networks},
  author={Toshev, Alexander and Szegedy, Christian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1653--1660},
  year={2014}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
  title={Deep residual learning for image recognition},
  author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={770--778},
  year={2016}
}
SoftWingloss (TIP'2021)
@article{lin2021structure,
  title={Structure-Coherent Deep Feature Learning for Robust Face Alignment},
  author={Lin, Chunze and Zhu, Beier and Wang, Quan and Liao, Renjie and Qian, Chen and Lu, Jiwen and Zhou, Jie},
  journal={IEEE Transactions on Image Processing},
  year={2021},
  publisher={IEEE}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
  title={Look at boundary: A boundary-aware face alignment algorithm},
  author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2129--2138},
  year={2018}
}

Results on WFLW dataset

The model is trained on WFLW train set.

Model Input Size NME ckpt log
ResNet-50+SoftWingLoss 256x256 4.44 ckpt log



AdaptiveWingloss (ICCV’2019)


Topdown Heatmap + Hrnetv2 + Awing on WFLW

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
AdaptiveWingloss (ICCV'2019)
@inproceedings{wang2019adaptive,
  title={Adaptive wing loss for robust face alignment via heatmap regression},
  author={Wang, Xinyao and Bo, Liefeng and Fuxin, Li},
  booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
  pages={6971--6981},
  year={2019}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
  title={Look at boundary: A boundary-aware face alignment algorithm},
  author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={2129--2138},
  year={2018}
}

Results on WFLW dataset

The model is trained on WFLW train.

Arch Input Size NMEtest NMEpose NMEillumination NMEocclusion NMEblur NMEmakeup NMEexpression ckpt log
pose_hrnetv2_w18_awing 256x256 4.02 6.94 3.97 4.78 4.59 3.87 4.28 ckpt log



UDP (CVPR’2020)


Topdown Heatmap + Cspnext + Udp on Coco-Wholebody

RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
  title={Whole-Body Human Pose Estimation in the Wild},
  author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2020}
}

Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size Body AP Body AR Foot AP Foot AR Face AP Face AR Hand AP Hand AR Whole AP Whole AR ckpt log
pose_cspnext_m_udp 256x192 0.687 0.735 0.680 0.763 0.697 0.755 0.460 0.543 0.567 0.641 ckpt log

Topdown Heatmap + Cspnext + Udp on Crowdpose

RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
CrowdPose (CVPR'2019)
@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}

Results on CrowdPose test with YOLOv3 human detector

Arch Input Size AP AP50 AP75 AP (E) AP (M) AP (H) ckpt log
pose_cspnext_m 256x192 0.662 0.821 0.723 0.759 0.675 0.539 ckpt log

Topdown Heatmap + Cspnext + Udp on Coco

RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_cspnext_t_udp 256x192 0.665 0.874 0.723 0.723 0.917 ckpt log
pose_cspnext_s_udp 256x192 0.697 0.886 0.776 0.753 0.929 ckpt log
pose_cspnext_m_udp 256x192 0.732 0.896 0.806 0.785 0.937 ckpt log
pose_cspnext_l_udp 256x192 0.750 0.904 0.822 0.800 0.941 ckpt log
pose_cspnext_t_udp_aic_coco 256x192 0.655 0.884 0.731 0.689 0.890 ckpt log
pose_cspnext_s_udp_aic_coco 256x192 0.700 0.905 0.783 0.733 0.918 ckpt log
pose_cspnext_m_udp_aic_coco 256x192 0.748 0.925 0.818 0.777 0.933 ckpt log
pose_cspnext_l_udp_aic_coco 256x192 0.772 0.936 0.839 0.799 0.943 ckpt log

Note that, UDP also adopts the unbiased encoding/decoding algorithm of DARK.

Flip test and detector is not used in the result of aic-coco training.


Topdown Heatmap + Hrnet + Udp on Coco

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}

Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset

Arch Input Size AP AP50 AP75 AR AR50 ckpt log
pose_hrnet_w32_udp 256x192 0.762 0.907 0.829 0.810 0.942 ckpt log
pose_hrnet_w32_udp 384x288 0.768 0.909 0.832 0.815 0.945 ckpt log
pose_hrnet_w48_udp 256x192 0.768 0.908 0.833 0.817 0.945 ckpt log
pose_hrnet_w48_udp 384x288 0.773 0.911 0.836 0.821 0.946 ckpt log
pose_hrnet_w32_udp_regress 256x192 0.759 0.907 0.827 0.813 0.943 ckpt log

Note that, UDP also adopts the unbiased encoding/decoding algorithm of DARK.


Topdown Heatmap + Cspnext + Udp on Mpii

RTMDet (arXiv'2022)
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
MPII (CVPR'2014)
@inproceedings{andriluka14cvpr,
  author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
  title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2014},
  month = {June}
}

Results on MPII val set

Arch Input Size Mean Mean@0.1 ckpt log
pose_hrnet_w32 256x256 0.902 0.303 ckpt log

Topdown Heatmap + Hrnetv2 + Udp on Onehand10k

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
OneHand10K (TCSVT'2019)
@article{wang2018mask,
  title={Mask-pose cascaded cnn for 2d hand pose estimation from single color image},
  author={Wang, Yangang and Peng, Cong and Liu, Yebin},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  volume={29},
  number={11},
  pages={3258--3268},
  year={2018},
  publisher={IEEE}
}

Results on OneHand10K val set

Arch Input Size PCK@0.2 AUC EPE ckpt log
pose_hrnetv2_w18_udp 256x256 0.990 0.571 23.88 ckpt log

Topdown Heatmap + Hrnetv2 + Udp on Rhd2d

HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
  title={Deep High-Resolution Representation Learning for Visual Recognition},
  author={Jingdong Wang and Ke Sun and Tianheng Cheng and
          Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
          Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
  journal={TPAMI},
  year={2019}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
RHD (ICCV'2017)
@TechReport{zb2017hand,
  author={Christian Zimmermann and Thomas Brox},
  title={Learning to Estimate 3D Hand Pose from Single RGB Images},
  institution={arXiv:1705.01389},
  year={2017},
  note="https://arxiv.org/abs/1705.01389",
  url="https://lmb.informatik.uni-freiburg.de/projects/hand3d/"
}

Results on RHD test set

Arch Input Size PCKh@0.7 AUC EPE ckpt log
pose_hrnetv2_w18_udp 256x256 0.992 0.902 2.19 ckpt log

Topdown Heatmap + Cspnext + Udp on Ap10k

RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
      title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
      author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
      year={2022},
      eprint={2212.07784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
AP-10K (NeurIPS'2021)
@misc{yu2021ap10k,
      title={AP-10K: A Benchmark for Animal Pose Estimation in the Wild},
      author={Hang Yu and Yufei Xu and Jing Zhang and Wei Zhao and Ziyu Guan and Dacheng Tao},
      year={2021},
      eprint={2108.12617},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Results on AP-10K validation set

Arch Input Size AP AP50 AP75 APM APL ckpt log
pose_cspnext_m 256x256 0.703 0.944 0.776 0.513 0.710 ckpt log

Topdown Heatmap + Hrnet on Deepfashion

HRNet (CVPR'2019)
@inproceedings{sun2019deep,
  title={Deep high-resolution representation learning for human pose estimation},
  author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={5693--5703},
  year={2019}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
  author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
  title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
  booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2020}
}
DeepFashion (CVPR'2016)
@inproceedings{liuLQWTcvpr16DeepFashion,
 author = {Liu, Ziwei and Luo, Ping and Qiu, Shi and Wang, Xiaogang and Tang, Xiaoou},
 title = {DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations},
 booktitle = {Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
 month = {June},
 year = {2016}
}
DeepFashion (ECCV'2016)
@inproceedings{liuYLWTeccv16FashionLandmark,
 author = {Liu, Ziwei and Yan, Sijie and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
 title = {Fashion Landmark Detection in the Wild},
 booktitle = {European Conference on Computer Vision (ECCV)},
 month = {October},
 year = {2016}
 }

Results on DeepFashion val set

Set Arch Input Size PCK@0.2 AUC EPE ckpt log
upper pose_hrnet_w48_udp 256x192 96.1 60.9 15.1 ckpt log
lower pose_hrnet_w48_udp 256x192 97.8 76.1 8.9 ckpt log
full pose_hrnet_w48_udp 256x192 98.3 67.3 11.7 ckpt log

Note: Due to the time constraints, we have only trained resnet50 models. We warmly welcome any contributions if you can successfully reproduce the results from the paper!