数据集标注与格式转换¶
本章提供了一些有用的数据集处理脚本,来满足 MMPose 的数据格式要求。
数据集标注¶
对于 Label Studio 用户,请依照 Label Studio 转换工具文档 中的方法进行标注,并将结果导出为 Label Studio 标准的 .json
文件,将 Labeling Interface
中的 Code
保存为 .xml
文件。
备注
MMPose 没有对用户使用的标注工具做任何限制,只要最终的标注结果符合 MMPose 的数据格式要求即可。我们非常欢迎社区用户贡献更多的数据集标注工具使用教程和转换脚本。
浏览数据集¶
MMPose 提供了一个有用的数据集浏览工具,通过它用户可以可视化地查看数据集的原始标注,和数据增强后的标注。这对于用户检查数据集加载和数据增强是否正确非常有用。
详细的使用方法请参考 【浏览数据集】。
通过 MIM 下载开源数据集¶
通过使用 OpenXLab,您可以直接下载开源数据集。通过平台的搜索功能,您可以快速轻松地找到他们正在寻找的数据集。使用平台上的格式化数据集,您可以高效地跨数据集执行任务。
我们推荐用户跟随 MIM 数据集下载教程 进行开源数据集的下载。
格式转换脚本¶
MMPose 提供了一些工具来帮助用户处理数据集。
Animal Pose 数据集¶
Animal-Pose (ICCV'2019)
@InProceedings{Cao_2019_ICCV,
author = {Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing},
title = {Cross-Domain Adaptation for Animal Pose Estimation},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
对于 Animal-Pose,可以从官方网站下载图像和标注。脚本 tools/dataset_converters/parse_animalpose_dataset.py
将原始标注转换为 MMPose 兼容的格式。预处理的标注文件可用。如果您想自己生成标注,请按照以下步骤操作:
下载图片与标注信息并解压到
$MMPOSE/data
,按照以下格式组织:mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── animalpose │ │-- VOC2012 │ │-- Annotations │ │-- ImageSets │ │-- JPEGImages │ │-- SegmentationClass │ │-- SegmentationObject │ │-- animalpose_image_part2 │ │-- cat │ │-- cow │ │-- dog │ │-- horse │ │-- sheep │ │-- PASCAL2011_animal_annotation │ │-- cat │ │ |-- 2007_000528_1.xml │ │ |-- 2007_000549_1.xml │ │ │-- ... │ │-- cow │ │-- dog │ │-- horse │ │-- sheep │ │-- annimalpose_anno2 │ │-- cat │ │ |-- ca1.xml │ │ |-- ca2.xml │ │ │-- ... │ │-- cow │ │-- dog │ │-- horse │ │-- sheep
运行脚本
python tools/dataset_converters/parse_animalpose_dataset.py
生成的标注文件将保存在
$MMPOSE/data/animalpose/annotations
中。
开源作者没有提供官方的 train/val/test 划分,我们选择来自 PascalVOC 的图片作为 train & val,train+val 一共 3600 张图片,5117 个标注。其中 2798 张图片,4000 个标注用于训练,810 张图片,1117 个标注用于验证。测试集包含 1000 张图片,1000 个标注用于评估。
COFW 数据集¶
COFW (ICCV'2013)
@inproceedings{burgos2013robust,
title={Robust face landmark estimation under occlusion},
author={Burgos-Artizzu, Xavier P and Perona, Pietro and Doll{\'a}r, Piotr},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1513--1520},
year={2013}
}
对于 COFW 数据集,请从 COFW Dataset (Color Images) 进行下载。
将 COFW_train_color.mat
和 COFW_test_color.mat
移动到 $MMPOSE/data/cofw/
,确保它们按照以下格式组织:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── cofw
|── COFW_train_color.mat
|── COFW_test_color.mat
运行 pip install h5py
安装依赖,然后在 $MMPOSE
下运行脚本:
python tools/dataset_converters/parse_cofw_dataset.py
最终结果为:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
│── cofw
|── COFW_train_color.mat
|── COFW_test_color.mat
|── annotations
| |── cofw_train.json
| |── cofw_test.json
|── images
|── 000001.jpg
|── 000002.jpg
DeepposeKit 数据集¶
Desert Locust (Elife'2019)
@article{graving2019deepposekit,
title={DeepPoseKit, a software toolkit for fast and robust animal pose estimation using deep learning},
author={Graving, Jacob M and Chae, Daniel and Naik, Hemal and Li, Liang and Koger, Benjamin and Costelloe, Blair R and Couzin, Iain D},
journal={Elife},
volume={8},
pages={e47994},
year={2019},
publisher={eLife Sciences Publications Limited}
}
对于 Vinegar Fly,Desert Locust, 和 Grévy’s Zebra 数据集,请从 DeepPoseKit-Data 下载数据。
tools/dataset_converters/parse_deepposekit_dataset.py
脚本可以将原始标注转换为 MMPose 支持的格式。我们已经转换好的标注文件可以在这里下载:
如果你希望自己转换数据,请按照以下步骤操作:
下载原始图片和标注,并解压到
$MMPOSE/data
,将它们按照以下格式组织:mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data | |── DeepPoseKit-Data | `── datasets | |── fly | | |── annotation_data_release.h5 | | |── skeleton.csv | | |── ... | | | |── locust | | |── annotation_data_release.h5 | | |── skeleton.csv | | |── ... | | | `── zebra | |── annotation_data_release.h5 | |── skeleton.csv | |── ... | │── fly `-- images │-- 0.jpg │-- 1.jpg │-- ...
图片也可以在 vinegar_fly_images,locust_images 和zebra_images 下载。
运行脚本:
python tools/dataset_converters/parse_deepposekit_dataset.py
生成的标注文件将保存在 $MMPOSE/data/fly/annotations
,
$MMPOSE/data/locust/annotations和
$MMPOSE/data/zebra/annotations` 中。
由于官方数据集中没有提供测试集,我们随机选择了 90% 的图片用于训练,剩下的 10% 用于测试。
Macaque 数据集¶
MacaquePose (bioRxiv'2020)
@article{labuguen2020macaquepose,
title={MacaquePose: A novel ‘in the wild’macaque monkey pose dataset for markerless motion capture},
author={Labuguen, Rollyn and Matsumoto, Jumpei and Negrete, Salvador and Nishimaru, Hiroshi and Nishijo, Hisao and Takada, Masahiko and Go, Yasuhiro and Inoue, Ken-ichi and Shibata, Tomohiro},
journal={bioRxiv},
year={2020},
publisher={Cold Spring Harbor Laboratory}
}
对于 MacaquePose 数据集,请从 这里 下载数据。
tools/dataset_converters/parse_macaquepose_dataset.py
脚本可以将原始标注转换为 MMPose 支持的格式。我们已经转换好的标注文件可以在 这里 下载。
如果你希望自己转换数据,请按照以下步骤操作:
下载原始图片和标注,并解压到
$MMPOSE/data
,将它们按照以下格式组织:mmpose ├── mmpose ├── docs ├── tests ├── tools ├── configs `── data │── macaque │-- annotations.csv │-- images │ │-- 01418849d54b3005.jpg │ │-- 0142d1d1a6904a70.jpg │ │-- 01ef2c4c260321b7.jpg │ │-- 020a1c75c8c85238.jpg │ │-- 020b1506eef2557d.jpg │ │-- ...
运行脚本:
python tools/dataset_converters/parse_macaquepose_dataset.py
生成的标注文件将保存在
$MMPOSE/data/macaque/annotations
中。
由于官方数据集中没有提供测试集,我们随机选择了 90% 的图片用于训练,剩下的 10% 用于测试。
Human3.6M 数据集¶
Human3.6M (TPAMI'2014)
@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
对于 Human3.6M 数据集,请从官网下载数据,放置到 $MMPOSE/data/h36m
下。
然后执行 预处理脚本。
python tools/dataset_converters/preprocess_h36m.py --metadata {path to metadata.xml} --original data/h36m
这将在全帧率(50 FPS)和降频帧率(10 FPS)下提取相机参数和姿势注释。处理后的数据应具有以下结构:
mmpose
├── mmpose
├── docs
├── tests
├── tools
├── configs
`── data
├── h36m
├── annotation_body3d
| ├── cameras.pkl
| ├── fps50
| | ├── h36m_test.npz
| | ├── h36m_train.npz
| | ├── joint2d_rel_stats.pkl
| | ├── joint2d_stats.pkl
| | ├── joint3d_rel_stats.pkl
| | `── joint3d_stats.pkl
| `── fps10
| ├── h36m_test.npz
| ├── h36m_train.npz
| ├── joint2d_rel_stats.pkl
| ├── joint2d_stats.pkl
| ├── joint3d_rel_stats.pkl
| `── joint3d_stats.pkl
`── images
├── S1
| ├── S1_Directions_1.54138969
| | ├── S1_Directions_1.54138969_00001.jpg
| | ├── S1_Directions_1.54138969_00002.jpg
| | ├── ...
| ├── ...
├── S5
├── S6
├── S7
├── S8
├── S9
`── S11
然后,标注信息需要转换为 MMPose 支持的 COCO 格式。这可以通过运行以下命令完成:
python tools/dataset_converters/h36m_to_coco.py
MPII 数据集¶
MPII (CVPR'2014)
@inproceedings{andriluka14cvpr,
author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2014},
month = {June}
}
对于 MPII 数据集,请从官网下载数据,放置到 $MMPOSE/data/mpii
下。
我们提供了一个脚本来将 .mat
格式的标注文件转换为 .json
格式。这可以通过运行以下命令完成:
python tools/dataset_converters/mat2json ${PRED_MAT_FILE} ${GT_JSON_FILE} ${OUTPUT_PRED_JSON_FILE}
例如:
python tools/dataset/mat2json work_dirs/res50_mpii_256x256/pred.mat data/mpii/annotations/mpii_val.json pred.json
Label Studio 数据集¶
Label Studio
@misc{Label Studio,
title={{Label Studio}: Data labeling software},
url={https://github.com/heartexlabs/label-studio},
note={Open source software available from https://github.com/heartexlabs/label-studio},
author={
Maxim Tkachenko and
Mikhail Malyuk and
Andrey Holmanyuk and
Nikolai Liubimov},
year={2020-2022},
}
对于 Label Studio 用户,请依照 Label Studio 转换工具文档 中的方法进行标注,并将结果导出为 Label Studio 标准的 .json
文件,将 Labeling Interface
中的 Code
保存为 .xml
文件。
我们提供了一个脚本来将 Label Studio 标准的 .json
格式标注文件转换为 COCO 标准的 .json
格式。这可以通过运行以下命令完成:
python tools/dataset_converters/labelstudio2coco.py ${LS_JSON_FILE} ${LS_XML_FILE} ${OUTPUT_COCO_JSON_FILE}
例如:
python tools/dataset_converters/labelstudio2coco.py config.xml project-1-at-2023-05-13-09-22-91b53efa.json output/result.json