Face 2D Keypoint¶
WFLW Dataset¶
Topdown Regression + Resnet on WFLW¶
DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
title={Deeppose: Human pose estimation via deep neural networks},
author={Toshev, Alexander and Szegedy, Christian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1653--1660},
year={2014}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train set.
Model | Input Size | NME | ckpt | log |
---|---|---|---|---|
ResNet-50 | 256x256 | 4.88 | ckpt | log |
Topdown Regression + Resnet + Softwingloss on WFLW¶
DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
title={Deeppose: Human pose estimation via deep neural networks},
author={Toshev, Alexander and Szegedy, Christian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1653--1660},
year={2014}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
SoftWingloss (TIP'2021)
@article{lin2021structure,
title={Structure-Coherent Deep Feature Learning for Robust Face Alignment},
author={Lin, Chunze and Zhu, Beier and Wang, Quan and Liao, Renjie and Qian, Chen and Lu, Jiwen and Zhou, Jie},
journal={IEEE Transactions on Image Processing},
year={2021},
publisher={IEEE}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train set.
Model | Input Size | NME | ckpt | log |
---|---|---|---|---|
ResNet-50+SoftWingLoss | 256x256 | 4.44 | ckpt | log |
Topdown Regression + Resnet + Wingloss on WFLW¶
DeepPose (CVPR'2014)
@inproceedings{toshev2014deeppose,
title={Deeppose: Human pose estimation via deep neural networks},
author={Toshev, Alexander and Szegedy, Christian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={1653--1660},
year={2014}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
Wingloss (CVPR'2018)
@inproceedings{feng2018wing,
title={Wing Loss for Robust Facial Landmark Localisation with Convolutional Neural Networks},
author={Feng, Zhen-Hua and Kittler, Josef and Awais, Muhammad and Huber, Patrik and Wu, Xiao-Jun},
booktitle={Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on},
year={2018},
pages ={2235-2245},
organization={IEEE}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train set.
Model | Input Size | NME | ckpt | log |
---|---|---|---|---|
ResNet-50+WingLoss | 256x256 | 4.67 | ckpt | log |
Topdown Heatmap + Hrnetv2 on WFLW¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train.
Arch | Input Size | NMEtest | NMEpose | NMEillumination | NMEocclusion | NMEblur | NMEmakeup | NMEexpression | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 4.06 | 6.97 | 3.99 | 4.83 | 4.58 | 3.94 | 4.33 | ckpt | log |
Topdown Heatmap + Hrnetv2 + Dark on WFLW¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
title={Distribution-aware coordinate representation for human pose estimation},
author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7093--7102},
year={2020}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train.
Arch | Input Size | NMEtest | NMEpose | NMEillumination | NMEocclusion | NMEblur | NMEmakeup | NMEexpression | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|
pose_hrnetv2_w18_dark | 256x256 | 3.98 | 6.98 | 3.96 | 4.78 | 4.56 | 3.89 | 4.29 | ckpt | log |
Topdown Heatmap + Hrnetv2 + Awing on WFLW¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
AdaptiveWingloss (ICCV'2019)
@inproceedings{wang2019adaptive,
title={Adaptive wing loss for robust face alignment via heatmap regression},
author={Wang, Xinyao and Bo, Liefeng and Fuxin, Li},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={6971--6981},
year={2019}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train.
Arch | Input Size | NMEtest | NMEpose | NMEillumination | NMEocclusion | NMEblur | NMEmakeup | NMEexpression | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|
pose_hrnetv2_w18_awing | 256x256 | 4.02 | 6.94 | 3.97 | 4.78 | 4.59 | 3.87 | 4.28 | ckpt | log |
Rtmpose + Rtmpose on WFLW¶
RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
WFLW (CVPR'2018)
@inproceedings{wu2018look,
title={Look at boundary: A boundary-aware face alignment algorithm},
author={Wu, Wayne and Qian, Chen and Yang, Shuo and Wang, Quan and Cai, Yici and Zhou, Qiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={2129--2138},
year={2018}
}
Results on WFLW dataset
The model is trained on WFLW train.
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_rtmpose_m | 256x256 | 4.01 | ckpt | log |
Coco_wholebody_face Dataset¶
Topdown Heatmap + Hrnetv2 + Dark + Coco + Wholebody + Face on Coco_wholebody_face¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
title={Distribution-aware coordinate representation for human pose estimation},
author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7093--7102},
year={2020}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_hrnetv2_w18_dark | 256x256 | 0.0513 | ckpt | log |
Topdown Heatmap + Mobilenetv2 + Coco + Wholebody + Face on Coco_wholebody_face¶
MobilenetV2 (CVPR'2018)
@inproceedings{sandler2018mobilenetv2,
title={Mobilenetv2: Inverted residuals and linear bottlenecks},
author={Sandler, Mark and Howard, Andrew and Zhu, Menglong and Zhmoginov, Andrey and Chen, Liang-Chieh},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4510--4520},
year={2018}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_mobilenetv2 | 256x256 | 0.0611 | ckpt | log |
Topdown Heatmap + Hourglass + Coco + Wholebody + Face on Coco_wholebody_face¶
Hourglass (ECCV'2016)
@inproceedings{newell2016stacked,
title={Stacked hourglass networks for human pose estimation},
author={Newell, Alejandro and Yang, Kaiyu and Deng, Jia},
booktitle={European conference on computer vision},
pages={483--499},
year={2016},
organization={Springer}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_hourglass_52 | 256x256 | 0.0587 | ckpt | log |
Topdown Heatmap + Resnet + Coco + Wholebody + Face on Coco_wholebody_face¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
ResNet (CVPR'2016)
@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={770--778},
year={2016}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_res50 | 256x256 | 0.0582 | ckpt | log |
Topdown Heatmap + Hrnetv2 + Coco + Wholebody + Face on Coco_wholebody_face¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 0.0569 | ckpt | log |
Topdown Heatmap + Scnet + Coco + Wholebody + Face on Coco_wholebody_face¶
SCNet (CVPR'2020)
@inproceedings{liu2020improving,
title={Improving Convolutional Networks with Self-Calibrated Convolutions},
author={Liu, Jiang-Jiang and Hou, Qibin and Cheng, Ming-Ming and Wang, Changhu and Feng, Jiashi},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={10096--10105},
year={2020}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_scnet_50 | 256x256 | 0.0567 | ckpt | log |
Rtmpose + Rtmpose + Coco + Wholebody + Face on Coco_wholebody_face¶
RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCO-WholeBody-Face (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody-Face val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_rtmpose_m | 256x256 | 0.0466 | ckpt | log |
Cofw Dataset¶
Topdown Heatmap + Hrnetv2 on Cofw¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
COFW (ICCV'2013)
@inproceedings{burgos2013robust,
title={Robust face landmark estimation under occlusion},
author={Burgos-Artizzu, Xavier P and Perona, Pietro and Doll{\'a}r, Piotr},
booktitle={Proceedings of the IEEE international conference on computer vision},
pages={1513--1520},
year={2013}
}
Results on COFW dataset
The model is trained on COFW train.
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 3.48 | ckpt | log |
300w Dataset¶
Topdown Heatmap + Hrnetv2 on 300w¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
300W (IMAVIS'2016)
@article{sagonas2016300,
title={300 faces in-the-wild challenge: Database and results},
author={Sagonas, Christos and Antonakos, Epameinondas and Tzimiropoulos, Georgios and Zafeiriou, Stefanos and Pantic, Maja},
journal={Image and vision computing},
volume={47},
pages={3--18},
year={2016},
publisher={Elsevier}
}
Results on 300W dataset
The model is trained on 300W train.
Arch | Input Size | NMEcommon | NMEchallenge | NMEfull | NMEtest | ckpt | log |
---|---|---|---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 2.92 | 5.64 | 3.45 | 4.10 | ckpt | log |
300wlp Dataset¶
Topdown Heatmap + Hrnetv2 on 300wlp¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
300WLP (IEEE'2017)
@article{zhu2017face,
title={Face alignment in full pose range: A 3d total solution},
author={Zhu, Xiangyu and Liu, Xiaoming and Lei, Zhen and Li, Stan Z},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2017},
publisher={IEEE}
}
Results on 300W-LP dataset
The model is trained on 300W-LP train.
Arch | Input Size | NMEfull | NMEtest | ckpt | log |
---|---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 0.0413 | 0.04125 | ckpt | log |
Aflw Dataset¶
Topdown Heatmap + Hrnetv2 + Dark on Aflw¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
title={Distribution-aware coordinate representation for human pose estimation},
author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7093--7102},
year={2020}
}
AFLW (ICCVW'2011)
@inproceedings{koestinger2011annotated,
title={Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization},
author={Koestinger, Martin and Wohlhart, Paul and Roth, Peter M and Bischof, Horst},
booktitle={2011 IEEE international conference on computer vision workshops (ICCV workshops)},
pages={2144--2151},
year={2011},
organization={IEEE}
}
Results on AFLW dataset
The model is trained on AFLW train and evaluated on AFLW full and frontal.
Arch | Input Size | NMEfull | NMEfrontal | ckpt | log |
---|---|---|---|---|---|
pose_hrnetv2_w18_dark | 256x256 | 1.35 | 1.19 | ckpt | log |
Topdown Heatmap + Hrnetv2 on Aflw¶
HRNetv2 (TPAMI'2019)
@article{WangSCJDZLMTWLX19,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal={TPAMI},
year={2019}
}
AFLW (ICCVW'2011)
@inproceedings{koestinger2011annotated,
title={Annotated facial landmarks in the wild: A large-scale, real-world database for facial landmark localization},
author={Koestinger, Martin and Wohlhart, Paul and Roth, Peter M and Bischof, Horst},
booktitle={2011 IEEE international conference on computer vision workshops (ICCV workshops)},
pages={2144--2151},
year={2011},
organization={IEEE}
}
Results on AFLW dataset
The model is trained on AFLW train and evaluated on AFLW full and frontal.
Arch | Input Size | NMEfull | NMEfrontal | ckpt | log |
---|---|---|---|---|---|
pose_hrnetv2_w18 | 256x256 | 1.41 | 1.27 | ckpt | log |
Face6 Dataset¶
Rtmpose + Rtmpose on Face6¶
RTMPose (arXiv'2023)
@misc{https://doi.org/10.48550/arxiv.2303.07399,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
RTMDet (arXiv'2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset.
Face6
and*
denote model trained on 6 public datasets:
Config | Input Size | NME (LaPa) |
FLOPS (G) |
Download |
---|---|---|---|---|
RTMPose-t* | 256x256 | 1.67 | 0.652 | Model |
RTMPose-s* | 256x256 | 1.59 | 1.119 | Model |
RTMPose-m* | 256x256 | 1.44 | 2.852 | Model |
Lapa Dataset¶
Rtmpose + Rtmpose on Lapa¶
RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
LaPa (AAAI'2020)
@inproceedings{liu2020new,
title={A New Dataset and Boundary-Attention Semantic Segmentation for Face Parsing.},
author={Liu, Yinglu and Shi, Hailin and Shen, Hao and Si, Yue and Wang, Xiaobo and Mei, Tao},
booktitle={AAAI},
pages={11637--11644},
year={2020}
}
Results on LaPa val set
Arch | Input Size | NME | ckpt | log |
---|---|---|---|---|
pose_rtmpose_m | 256x256 | 1.29 | ckpt | log |