Wholebody 2D Keypoint¶
Ubody2d Dataset¶
Topdown Heatmap + Hrnet + Ubody-Coco-Wholebody on Ubody2d¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
UBody (CVPR'2023)
@article{lin2023one,
title={One-Stage 3D Whole-Body Mesh Recovery with Component Aware Transformer},
author={Lin, Jing and Zeng, Ailing and Wang, Haoqian and Zhang, Lei and Li, Yu},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2023},
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_hrnet_w32 | 256x192 | 0.685 | 0.759 | 0.564 | 0.675 | 0.625 | 0.705 | 0.516 | 0.609 | 0.549 | 0.646 | ckpt | log |
Coco-Wholebody Dataset¶
Topdown Heatmap + Cspnext + Udp on Coco-Wholebody¶
RTMDet (ArXiv 2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
UDP (CVPR'2020)
@InProceedings{Huang_2020_CVPR,
author = {Huang, Junjie and Zhu, Zheng and Guo, Feng and Huang, Guan},
title = {The Devil Is in the Details: Delving Into Unbiased Data Processing for Human Pose Estimation},
booktitle = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_cspnext_m_udp | 256x192 | 0.687 | 0.735 | 0.680 | 0.763 | 0.697 | 0.755 | 0.460 | 0.543 | 0.567 | 0.641 | ckpt | log |
Topdown Heatmap + Resnet on Coco-Wholebody¶
SimpleBaseline2D (ECCV'2018)
@inproceedings{xiao2018simple,
title={Simple baselines for human pose estimation and tracking},
author={Xiao, Bin and Wu, Haiping and Wei, Yichen},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={466--481},
year={2018}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_resnet_50 | 256x192 | 0.652 | 0.738 | 0.615 | 0.749 | 0.606 | 0.715 | 0.460 | 0.584 | 0.521 | 0.633 | ckpt | log |
pose_resnet_50 | 384x288 | 0.666 | 0.747 | 0.634 | 0.763 | 0.731 | 0.811 | 0.536 | 0.646 | 0.574 | 0.670 | ckpt | log |
pose_resnet_101 | 256x192 | 0.669 | 0.753 | 0.637 | 0.766 | 0.611 | 0.722 | 0.463 | 0.589 | 0.531 | 0.645 | ckpt | log |
pose_resnet_101 | 384x288 | 0.692 | 0.770 | 0.680 | 0.799 | 0.746 | 0.820 | 0.548 | 0.657 | 0.597 | 0.693 | ckpt | log |
pose_resnet_152 | 256x192 | 0.682 | 0.764 | 0.661 | 0.787 | 0.623 | 0.728 | 0.481 | 0.607 | 0.548 | 0.661 | ckpt | log |
pose_resnet_152 | 384x288 | 0.704 | 0.780 | 0.693 | 0.813 | 0.751 | 0.824 | 0.559 | 0.666 | 0.610 | 0.705 | ckpt | log |
Topdown Heatmap + Hrnet on Coco-Wholebody¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_hrnet_w32 | 256x192 | 0.678 | 0.755 | 0.543 | 0.661 | 0.630 | 0.708 | 0.467 | 0.566 | 0.536 | 0.636 | ckpt | log |
pose_hrnet_w32 | 384x288 | 0.700 | 0.772 | 0.585 | 0.691 | 0.726 | 0.783 | 0.515 | 0.603 | 0.586 | 0.673 | ckpt | log |
pose_hrnet_w48 | 256x192 | 0.701 | 0.776 | 0.675 | 0.787 | 0.656 | 0.743 | 0.535 | 0.639 | 0.579 | 0.681 | ckpt | log |
pose_hrnet_w48 | 384x288 | 0.722 | 0.791 | 0.696 | 0.801 | 0.776 | 0.834 | 0.587 | 0.678 | 0.632 | 0.717 | ckpt | log |
Topdown Heatmap + Hrnet + Dark on Coco-Wholebody¶
HRNet (CVPR'2019)
@inproceedings{sun2019deep,
title={Deep high-resolution representation learning for human pose estimation},
author={Sun, Ke and Xiao, Bin and Liu, Dong and Wang, Jingdong},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={5693--5703},
year={2019}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
title={Distribution-aware coordinate representation for human pose estimation},
author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7093--7102},
year={2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pose_hrnet_w32_dark | 256x192 | 0.693 | 0.764 | 0.564 | 0.674 | 0.737 | 0.809 | 0.503 | 0.602 | 0.582 | 0.671 | ckpt | log |
pose_hrnet_w48_dark+ | 384x288 | 0.742 | 0.807 | 0.707 | 0.806 | 0.841 | 0.892 | 0.602 | 0.694 | 0.661 | 0.743 | ckpt | log |
Note: +
means the model is first pre-trained on original COCO dataset, and then fine-tuned on COCO-WholeBody dataset. We find this will lead to better performance.
Topdown Heatmap + Vipnas + Dark on Coco-Wholebody¶
ViPNAS (CVPR'2021)
@article{xu2021vipnas,
title={ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search},
author={Xu, Lumin and Guan, Yingda and Jin, Sheng and Liu, Wentao and Qian, Chen and Luo, Ping and Ouyang, Wanli and Wang, Xiaogang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
year={2021}
}
DarkPose (CVPR'2020)
@inproceedings{zhang2020distribution,
title={Distribution-aware coordinate representation for human pose estimation},
author={Zhang, Feng and Zhu, Xiatian and Dai, Hanbin and Ye, Mao and Zhu, Ce},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={7093--7102},
year={2020}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-ViPNAS-MobileNetV3_dark | 256x192 | 0.632 | 0.710 | 0.530 | 0.660 | 0.672 | 0.771 | 0.404 | 0.519 | 0.508 | 0.607 | ckpt | log |
S-ViPNAS-Res50_dark | 256x192 | 0.650 | 0.732 | 0.550 | 0.686 | 0.684 | 0.783 | 0.437 | 0.554 | 0.528 | 0.632 | ckpt | log |
Topdown Heatmap + Vipnas on Coco-Wholebody¶
ViPNAS (CVPR'2021)
@article{xu2021vipnas,
title={ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search},
author={Xu, Lumin and Guan, Yingda and Jin, Sheng and Liu, Wentao and Qian, Chen and Luo, Ping and Ouyang, Wanli and Wang, Xiaogang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
year={2021}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S-ViPNAS-MobileNetV3 | 256x192 | 0.619 | 0.700 | 0.477 | 0.608 | 0.585 | 0.689 | 0.386 | 0.505 | 0.473 | 0.578 | ckpt | log |
S-ViPNAS-Res50 | 256x192 | 0.643 | 0.726 | 0.553 | 0.694 | 0.587 | 0.698 | 0.410 | 0.529 | 0.495 | 0.607 | ckpt | log |
Rtmpose + Rtmpose on Coco-Wholebody¶
RTMPose (arXiv'2023)
@misc{https://doi.org/10.48550/arxiv.2303.07399,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
RTMDet (arXiv'2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rtmpose-m | 256x192 | 0.673 | 0.750 | 0.615 | 0.752 | 0.813 | 0.871 | 0.475 | 0.589 | 0.582 | 0.674 | ckpt | log |
rtmpose-l | 256x192 | 0.695 | 0.769 | 0.658 | 0.785 | 0.833 | 0.887 | 0.519 | 0.628 | 0.611 | 0.700 | ckpt | log |
rtmpose-l | 384x288 | 0.712 | 0.781 | 0.693 | 0.811 | 0.882 | 0.919 | 0.579 | 0.677 | 0.648 | 0.730 | ckpt | log |
Cocktail14 Dataset¶
Rtmpose + RTMW on Cocktail14¶
RTMPose (arXiv'2023)
@misc{https://doi.org/10.48550/arxiv.2303.07399,
doi = {10.48550/ARXIV.2303.07399},
url = {https://arxiv.org/abs/2303.07399},
author = {Jiang, Tao and Lu, Peng and Zhang, Li and Ma, Ningsheng and Han, Rui and Lyu, Chengqi and Li, Yining and Chen, Kai},
keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {RTMPose: Real-Time Multi-Person Pose Estimation based on MMPose},
publisher = {arXiv},
year = {2023},
copyright = {Creative Commons Attribution 4.0 International}
}
RTMDet (arXiv'2022)
@misc{lyu2022rtmdet,
title={RTMDet: An Empirical Study of Designing Real-Time Object Detectors},
author={Chengqi Lyu and Wenwei Zhang and Haian Huang and Yue Zhou and Yudong Wang and Yanyi Liu and Shilong Zhang and Kai Chen},
year={2022},
eprint={2212.07784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
COCO-WholeBody (ECCV'2020)
@inproceedings{jin2020whole,
title={Whole-Body Human Pose Estimation in the Wild},
author={Jin, Sheng and Xu, Lumin and Xu, Jin and Wang, Can and Liu, Wentao and Qian, Chen and Ouyang, Wanli and Luo, Ping},
booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
year={2020}
}
Cocktail14
denotes model trained on 14 public datasets:
Results on COCO-WholeBody v1.0 val with detector having human AP of 56.4 on COCO val2017 dataset
Arch | Input Size | Body AP | Body AR | Foot AP | Foot AR | Face AP | Face AR | Hand AP | Hand AR | Whole AP | Whole AR | ckpt | log |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rtmw-m | 256x192 | 0.676 | 0.747 | 0.671 | 0.794 | 0.783 | 0.854 | 0.491 | 0.604 | 0.582 | 0.673 | ckpt | - |
rtmw-l | 256x192 | 0.743 | 0.807 | 0.763 | 0.868 | 0.834 | 0.889 | 0.598 | 0.701 | 0.660 | 0.746 | ckpt | - |
rtmw-x | 256x192 | 0.746 | 0.808 | 0.770 | 0.869 | 0.844 | 0.896 | 0.610 | 0.710 | 0.672 | 0.752 | ckpt | - |
rtmw-l | 384x288 | 0.761 | 0.824 | 0.793 | 0.885 | 0.884 | 0.921 | 0.663 | 0.752 | 0.701 | 0.780 | ckpt | - |
rtmw-x | 384x288 | 0.763 | 0.826 | 0.796 | 0.888 | 0.884 | 0.923 | 0.664 | 0.755 | 0.702 | 0.781 | ckpt | - |