mmpose.datasets.dataset_wrappers 源代码
# Copyright (c) OpenMMLab. All rights reserved.
from copy import deepcopy
from typing import Any, Callable, List, Optional, Tuple, Union
import numpy as np
from mmengine.dataset import BaseDataset
from mmengine.registry import build_from_cfg
from mmpose.registry import DATASETS
from .datasets.utils import parse_pose_metainfo
[文档]@DATASETS.register_module()
class CombinedDataset(BaseDataset):
"""A wrapper of combined dataset.
Args:
metainfo (dict): The meta information of combined dataset.
datasets (list): The configs of datasets to be combined.
pipeline (list, optional): Processing pipeline. Defaults to [].
sample_ratio_factor (list, optional): A list of sampling ratio
factors for each dataset. Defaults to None
"""
def __init__(self,
metainfo: dict,
datasets: list,
pipeline: List[Union[dict, Callable]] = [],
sample_ratio_factor: Optional[List[float]] = None,
**kwargs):
self.datasets = []
self.resample = sample_ratio_factor is not None
for cfg in datasets:
dataset = build_from_cfg(cfg, DATASETS)
self.datasets.append(dataset)
self._lens = [len(dataset) for dataset in self.datasets]
if self.resample:
assert len(sample_ratio_factor) == len(datasets), f'the length ' \
f'of `sample_ratio_factor` {len(sample_ratio_factor)} does ' \
f'not match the length of `datasets` {len(datasets)}'
assert min(sample_ratio_factor) >= 0.0, 'the ratio values in ' \
'`sample_ratio_factor` should not be negative.'
self._lens_ori = self._lens
self._lens = [
round(l * sample_ratio_factor[i])
for i, l in enumerate(self._lens_ori)
]
self._len = sum(self._lens)
super(CombinedDataset, self).__init__(pipeline=pipeline, **kwargs)
self._metainfo = parse_pose_metainfo(metainfo)
@property
def metainfo(self):
return deepcopy(self._metainfo)
@property
def lens(self):
return deepcopy(self._lens)
def __len__(self):
return self._len
def _get_subset_index(self, index: int) -> Tuple[int, int]:
"""Given a data sample's global index, return the index of the sub-
dataset the data sample belongs to, and the local index within that
sub-dataset.
Args:
index (int): The global data sample index
Returns:
tuple[int, int]:
- subset_index (int): The index of the sub-dataset
- local_index (int): The index of the data sample within
the sub-dataset
"""
if index >= len(self) or index < -len(self):
raise ValueError(
f'index({index}) is out of bounds for dataset with '
f'length({len(self)}).')
if index < 0:
index = index + len(self)
subset_index = 0
while index >= self._lens[subset_index]:
index -= self._lens[subset_index]
subset_index += 1
if self.resample:
gap = (self._lens_ori[subset_index] -
1e-4) / self._lens[subset_index]
index = round(gap * index + np.random.rand() * gap - 0.5)
return subset_index, index
[文档] def prepare_data(self, idx: int) -> Any:
"""Get data processed by ``self.pipeline``.The source dataset is
depending on the index.
Args:
idx (int): The index of ``data_info``.
Returns:
Any: Depends on ``self.pipeline``.
"""
data_info = self.get_data_info(idx)
# the assignment of 'dataset' should not be performed within the
# `get_data_info` function. Otherwise, it can lead to the mixed
# data augmentation process getting stuck.
data_info['dataset'] = self
return self.pipeline(data_info)
[文档] def get_data_info(self, idx: int) -> dict:
"""Get annotation by index.
Args:
idx (int): Global index of ``CombinedDataset``.
Returns:
dict: The idx-th annotation of the datasets.
"""
subset_idx, sample_idx = self._get_subset_index(idx)
# Get data sample processed by ``subset.pipeline``
data_info = self.datasets[subset_idx][sample_idx]
if 'dataset' in data_info:
data_info.pop('dataset')
# Add metainfo items that are required in the pipeline and the model
metainfo_keys = [
'upper_body_ids', 'lower_body_ids', 'flip_pairs',
'dataset_keypoint_weights', 'flip_indices'
]
for key in metainfo_keys:
data_info[key] = deepcopy(self._metainfo[key])
return data_info
[文档] def full_init(self):
"""Fully initialize all sub datasets."""
if self._fully_initialized:
return
for dataset in self.datasets:
dataset.full_init()
self._fully_initialized = True