mmpose.datasets.datasets.body.mhp_dataset 源代码
# Copyright (c) OpenMMLab. All rights reserved.
from mmpose.registry import DATASETS
from ..base import BaseCocoStyleDataset
[文档]@DATASETS.register_module()
class MhpDataset(BaseCocoStyleDataset):
"""MHPv2.0 dataset for pose estimation.
"Understanding Humans in Crowded Scenes: Deep Nested Adversarial
Learning and A New Benchmark for Multi-Human Parsing", ACM MM'2018.
More details can be found in the `paper
<https://arxiv.org/abs/1804.03287>`__
MHP keypoints::
0: "right ankle",
1: "right knee",
2: "right hip",
3: "left hip",
4: "left knee",
5: "left ankle",
6: "pelvis",
7: "thorax",
8: "upper neck",
9: "head top",
10: "right wrist",
11: "right elbow",
12: "right shoulder",
13: "left shoulder",
14: "left elbow",
15: "left wrist",
Args:
ann_file (str): Annotation file path. Default: ''.
bbox_file (str, optional): Detection result file path. If
``bbox_file`` is set, detected bboxes loaded from this file will
be used instead of ground-truth bboxes. This setting is only for
evaluation, i.e., ignored when ``test_mode`` is ``False``.
Default: ``None``.
data_mode (str): Specifies the mode of data samples: ``'topdown'`` or
``'bottomup'``. In ``'topdown'`` mode, each data sample contains
one instance; while in ``'bottomup'`` mode, each data sample
contains all instances in a image. Default: ``'topdown'``
metainfo (dict, optional): Meta information for dataset, such as class
information. Default: ``None``.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Default: ``None``.
data_prefix (dict, optional): Prefix for training data. Default:
``dict(img=None, ann=None)``.
filter_cfg (dict, optional): Config for filter data. Default: `None`.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Default: ``None`` which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy.
Default: ``True``.
pipeline (list, optional): Processing pipeline. Default: [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Default: ``False``.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Default: ``False``.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Default: 1000.
"""
METAINFO: dict = dict(from_file='configs/_base_/datasets/mhp.py')