mmpose.datasets.datasets.hand.coco_wholebody_hand_dataset 源代码
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from typing import List, Tuple
import numpy as np
from mmengine.fileio import exists, get_local_path
from xtcocotools.coco import COCO
from mmpose.registry import DATASETS
from mmpose.structures.bbox import bbox_xywh2xyxy
from ..base import BaseCocoStyleDataset
[文档]@DATASETS.register_module()
class CocoWholeBodyHandDataset(BaseCocoStyleDataset):
"""CocoWholeBodyDataset for hand pose estimation.
"Whole-Body Human Pose Estimation in the Wild", ECCV'2020.
More details can be found in the `paper
<https://arxiv.org/abs/2007.11858>`__ .
COCO-WholeBody Hand keypoints::
0: 'wrist',
1: 'thumb1',
2: 'thumb2',
3: 'thumb3',
4: 'thumb4',
5: 'forefinger1',
6: 'forefinger2',
7: 'forefinger3',
8: 'forefinger4',
9: 'middle_finger1',
10: 'middle_finger2',
11: 'middle_finger3',
12: 'middle_finger4',
13: 'ring_finger1',
14: 'ring_finger2',
15: 'ring_finger3',
16: 'ring_finger4',
17: 'pinky_finger1',
18: 'pinky_finger2',
19: 'pinky_finger3',
20: 'pinky_finger4'
Args:
ann_file (str): Annotation file path. Default: ''.
bbox_file (str, optional): Detection result file path. If
``bbox_file`` is set, detected bboxes loaded from this file will
be used instead of ground-truth bboxes. This setting is only for
evaluation, i.e., ignored when ``test_mode`` is ``False``.
Default: ``None``.
data_mode (str): Specifies the mode of data samples: ``'topdown'`` or
``'bottomup'``. In ``'topdown'`` mode, each data sample contains
one instance; while in ``'bottomup'`` mode, each data sample
contains all instances in a image. Default: ``'topdown'``
metainfo (dict, optional): Meta information for dataset, such as class
information. Default: ``None``.
data_root (str, optional): The root directory for ``data_prefix`` and
``ann_file``. Default: ``None``.
data_prefix (dict, optional): Prefix for training data. Default:
``dict(img=None, ann=None)``.
filter_cfg (dict, optional): Config for filter data. Default: `None`.
indices (int or Sequence[int], optional): Support using first few
data in annotation file to facilitate training/testing on a smaller
dataset. Default: ``None`` which means using all ``data_infos``.
serialize_data (bool, optional): Whether to hold memory using
serialized objects, when enabled, data loader workers can use
shared RAM from master process instead of making a copy.
Default: ``True``.
pipeline (list, optional): Processing pipeline. Default: [].
test_mode (bool, optional): ``test_mode=True`` means in test phase.
Default: ``False``.
lazy_init (bool, optional): Whether to load annotation during
instantiation. In some cases, such as visualization, only the meta
information of the dataset is needed, which is not necessary to
load annotation file. ``Basedataset`` can skip load annotations to
save time by set ``lazy_init=False``. Default: ``False``.
max_refetch (int, optional): If ``Basedataset.prepare_data`` get a
None img. The maximum extra number of cycles to get a valid
image. Default: 1000.
"""
METAINFO: dict = dict(
from_file='configs/_base_/datasets/coco_wholebody_hand.py')
def _load_annotations(self) -> Tuple[List[dict], List[dict]]:
"""Load data from annotations in COCO format."""
assert exists(self.ann_file), (
f'Annotation file `{self.ann_file}` does not exist')
with get_local_path(self.ann_file) as local_path:
self.coco = COCO(local_path)
instance_list = []
image_list = []
id = 0
for img_id in self.coco.getImgIds():
img = self.coco.loadImgs(img_id)[0]
img.update({
'img_id':
img_id,
'img_path':
osp.join(self.data_prefix['img'], img['file_name']),
})
image_list.append(img)
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=False)
anns = self.coco.loadAnns(ann_ids)
for ann in anns:
for type in ['left', 'right']:
# filter invalid hand annotations, there might be two
# valid instances (left and right hand) in one image
if ann[f'{type}hand_valid'] and max(
ann[f'{type}hand_kpts']) > 0:
bbox_xywh = np.array(
ann[f'{type}hand_box'],
dtype=np.float32).reshape(1, 4)
bbox = bbox_xywh2xyxy(bbox_xywh)
_keypoints = np.array(
ann[f'{type}hand_kpts'],
dtype=np.float32).reshape(1, -1, 3)
keypoints = _keypoints[..., :2]
keypoints_visible = np.minimum(1, _keypoints[..., 2])
num_keypoints = np.count_nonzero(keypoints.max(axis=2))
instance_info = {
'img_id': ann['image_id'],
'img_path': img['img_path'],
'bbox': bbox,
'bbox_score': np.ones(1, dtype=np.float32),
'num_keypoints': num_keypoints,
'keypoints': keypoints,
'keypoints_visible': keypoints_visible,
'iscrowd': ann['iscrowd'],
'segmentation': ann['segmentation'],
'id': id,
}
instance_list.append(instance_info)
id = id + 1
instance_list = sorted(instance_list, key=lambda x: x['id'])
return instance_list, image_list